用配方法解一元二次方程:
1. $ x ^ { 2 } - 6 x + 8 = 0 $.
2. $ x ^ { 2 } - 2 x = 1 $.
3. $ x ^ { 2 } - 8 x - 1 = 0 $.
4. $ x ^ { 2 } - 6 x - 4 = 0 $.
5. $ x ^ { 2 } - 8 x - 4 = 0 $.
6. $ x ^ { 2 } + 2 \sqrt { 5 } x = 4 $.
7. $ x ^ { 2 } - 4 x - 1 = 0 $.
8. $ x ^ { 2 } + 2 = 2 \sqrt { 2 } x $.
9. $ x ^ { 2 } - 2 x - 99 = 0 $.
10. $ x ^ { 2 } - 5 x + 1 = 0 $.
1. $ x ^ { 2 } - 6 x + 8 = 0 $.
2. $ x ^ { 2 } - 2 x = 1 $.
3. $ x ^ { 2 } - 8 x - 1 = 0 $.
4. $ x ^ { 2 } - 6 x - 4 = 0 $.
5. $ x ^ { 2 } - 8 x - 4 = 0 $.
6. $ x ^ { 2 } + 2 \sqrt { 5 } x = 4 $.
7. $ x ^ { 2 } - 4 x - 1 = 0 $.
8. $ x ^ { 2 } + 2 = 2 \sqrt { 2 } x $.
9. $ x ^ { 2 } - 2 x - 99 = 0 $.
10. $ x ^ { 2 } - 5 x + 1 = 0 $.
答案:
1. 解:
$x^{2}-6x + 8 = 0$
$x^{2}-6x=-8$
$x^{2}-6x + 9=-8 + 9$
$(x - 3)^{2}=1$
$x-3=\pm1$
$x_{1}=4,x_{2}=2$
2. 解:
$x^{2}-2x = 1$
$x^{2}-2x + 1=1 + 1$
$(x - 1)^{2}=2$
$x-1=\pm\sqrt{2}$
$x_{1}=1+\sqrt{2},x_{2}=1-\sqrt{2}$
3. 解:
$x^{2}-8x-1 = 0$
$x^{2}-8x = 1$
$x^{2}-8x + 16=1 + 16$
$(x - 4)^{2}=17$
$x-4=\pm\sqrt{17}$
$x_{1}=4+\sqrt{17},x_{2}=4-\sqrt{17}$
4. 解:
$x^{2}-6x-4 = 0$
$x^{2}-6x = 4$
$x^{2}-6x + 9=4 + 9$
$(x - 3)^{2}=13$
$x-3=\pm\sqrt{13}$
$x_{1}=3+\sqrt{13},x_{2}=3-\sqrt{13}$
5. 解:
$x^{2}-8x-4 = 0$
$x^{2}-8x = 4$
$x^{2}-8x + 16=4 + 16$
$(x - 4)^{2}=20$
$x-4=\pm2\sqrt{5}$
$x_{1}=4 + 2\sqrt{5},x_{2}=4-2\sqrt{5}$
6. 解:
$x^{2}+2\sqrt{5}x = 4$
$x^{2}+2\sqrt{5}x+5 = 4 + 5$
$(x+\sqrt{5})^{2}=9$
$x+\sqrt{5}=\pm3$
$x_{1}=3-\sqrt{5},x_{2}=-3-\sqrt{5}$
7. 解:
$x^{2}-4x-1 = 0$
$x^{2}-4x = 1$
$x^{2}-4x + 4=1 + 4$
$(x - 2)^{2}=5$
$x-2=\pm\sqrt{5}$
$x_{1}=2+\sqrt{5},x_{2}=2-\sqrt{5}$
8. 解:
$x^{2}+2 = 2\sqrt{2}x$
$x^{2}-2\sqrt{2}x=-2$
$x^{2}-2\sqrt{2}x + 2=-2 + 2$
$(x-\sqrt{2})^{2}=0$
$x_{1}=x_{2}=\sqrt{2}$
9. 解:
$x^{2}-2x-99 = 0$
$x^{2}-2x = 99$
$x^{2}-2x + 1=99 + 1$
$(x - 1)^{2}=100$
$x-1=\pm10$
$x_{1}=11,x_{2}=-9$
10. 解:
$x^{2}-5x + 1 = 0$
$x^{2}-5x=-1$
$x^{2}-5x+\frac{25}{4}=-1+\frac{25}{4}$
$(x-\frac{5}{2})^{2}=\frac{21}{4}$
$x-\frac{5}{2}=\pm\frac{\sqrt{21}}{2}$
$x_{1}=\frac{5+\sqrt{21}}{2},x_{2}=\frac{5-\sqrt{21}}{2}$
$x^{2}-6x + 8 = 0$
$x^{2}-6x=-8$
$x^{2}-6x + 9=-8 + 9$
$(x - 3)^{2}=1$
$x-3=\pm1$
$x_{1}=4,x_{2}=2$
2. 解:
$x^{2}-2x = 1$
$x^{2}-2x + 1=1 + 1$
$(x - 1)^{2}=2$
$x-1=\pm\sqrt{2}$
$x_{1}=1+\sqrt{2},x_{2}=1-\sqrt{2}$
3. 解:
$x^{2}-8x-1 = 0$
$x^{2}-8x = 1$
$x^{2}-8x + 16=1 + 16$
$(x - 4)^{2}=17$
$x-4=\pm\sqrt{17}$
$x_{1}=4+\sqrt{17},x_{2}=4-\sqrt{17}$
4. 解:
$x^{2}-6x-4 = 0$
$x^{2}-6x = 4$
$x^{2}-6x + 9=4 + 9$
$(x - 3)^{2}=13$
$x-3=\pm\sqrt{13}$
$x_{1}=3+\sqrt{13},x_{2}=3-\sqrt{13}$
5. 解:
$x^{2}-8x-4 = 0$
$x^{2}-8x = 4$
$x^{2}-8x + 16=4 + 16$
$(x - 4)^{2}=20$
$x-4=\pm2\sqrt{5}$
$x_{1}=4 + 2\sqrt{5},x_{2}=4-2\sqrt{5}$
6. 解:
$x^{2}+2\sqrt{5}x = 4$
$x^{2}+2\sqrt{5}x+5 = 4 + 5$
$(x+\sqrt{5})^{2}=9$
$x+\sqrt{5}=\pm3$
$x_{1}=3-\sqrt{5},x_{2}=-3-\sqrt{5}$
7. 解:
$x^{2}-4x-1 = 0$
$x^{2}-4x = 1$
$x^{2}-4x + 4=1 + 4$
$(x - 2)^{2}=5$
$x-2=\pm\sqrt{5}$
$x_{1}=2+\sqrt{5},x_{2}=2-\sqrt{5}$
8. 解:
$x^{2}+2 = 2\sqrt{2}x$
$x^{2}-2\sqrt{2}x=-2$
$x^{2}-2\sqrt{2}x + 2=-2 + 2$
$(x-\sqrt{2})^{2}=0$
$x_{1}=x_{2}=\sqrt{2}$
9. 解:
$x^{2}-2x-99 = 0$
$x^{2}-2x = 99$
$x^{2}-2x + 1=99 + 1$
$(x - 1)^{2}=100$
$x-1=\pm10$
$x_{1}=11,x_{2}=-9$
10. 解:
$x^{2}-5x + 1 = 0$
$x^{2}-5x=-1$
$x^{2}-5x+\frac{25}{4}=-1+\frac{25}{4}$
$(x-\frac{5}{2})^{2}=\frac{21}{4}$
$x-\frac{5}{2}=\pm\frac{\sqrt{21}}{2}$
$x_{1}=\frac{5+\sqrt{21}}{2},x_{2}=\frac{5-\sqrt{21}}{2}$
查看更多完整答案,请扫码查看