科目:,来源:,题型:

17.解: 由A+B+C=π, 得 = - , 所以有cos =sin .

cosA+2cos =cosA+2sin =1-2sin2 + 2sin

=-2(sin - )2+

当sin = , 即A=时, cosA+2cos取得最大值为

点击展开完整题目
试题详情
科目:,来源:,题型:

⒄、(本小题满分12分)

的三个内角为,求当A为何值时,取得最大值,并求出这个最大值。

⒅、(本小题满分12分)

A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为,服用B有效的概率为

(Ⅰ)求一个试验组为甲类组的概率;

(Ⅱ)观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望。

⒆、(本小题满分12分)

如图,是互相垂直的异面直线,MN是它们的公垂线段。点A、B在上,C在上,

(Ⅰ)证明

(Ⅱ)若,求与平面ABC所成角的余弦值。

⒇、(本小题满分12分)

在平面直角坐标系中,有一个以为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与轴的交点分别为A、B,且向量。求:

(Ⅰ)点M的轨迹方程;

(Ⅱ)的最小值。

(21)、(本小题满分14分)

已知函数

(Ⅰ)设,讨论的单调性;

(Ⅱ)若对任意恒有,求的取值范围。

(22)、(本小题满分12分)

设数列的前项的和

(Ⅰ)求首项与通项

(Ⅱ)设,证明:

点击展开完整题目
试题详情
科目:,来源:,题型:

⒀、已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于_______________。

⒁、设,式中变量满足下列条件

则z的最大值为_____________。

⒂、安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________种。(用数字作答)

⒃、设函数。若是奇函数,则__________。

点击展开完整题目
试题详情
科目:,来源:,题型:

⑴、设集合,则

A.             B.

C.             D.

⑵、已知函数的图象与函数的图象关于直线对称,则

A.          B.

C.          D.

⑶、双曲线的虚轴长是实轴长的2倍,则

A.        B.       C.      D.

⑷、如果复数是实数,则实数

A.        B.      C.       D.

⑸、函数的单调增区间为

A.       B.

C.       D.

⑹、的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且,则

A.        B.      C.       D.

⑺、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是

A.       B.     C.       D.

⑻、抛物线上的点到直线距离的最小值是

A.        B.      C.        D.

⑼、设平面向量的和。如果向量,满足,且顺时针旋转后与同向,其中,则

A.           B.

C.            D.

⑽、设是公差为正数的等差数列,若,则

A.        B.      C.       D.

⑾、用长度分别为2、3、4、5、6(单位:)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为

A.    B.      C.      D.

⑿、设集合。选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有

A.     B.        C.       D.

普通高等学校招生全国统一考试

理科数学

第Ⅱ卷

点击展开完整题目
试题详情
科目:,来源:,题型:

22、解:

(1)    将条件变为:1-,因此{1-}为一个等比数列,其首项为

1-,公比,从而1-,据此得an(n³1)…………1°

(2)    证:据1°得,a1·a2·…an

为证a1·a2·……an<2·n!

只要证nÎN*时有>…………2°

显然,左端每个因式都是正数,先证明,对每个nÎN*,有

³1-()…………3°

用数学归纳法证明3°式:

(i)           n=1时,3°式显然成立,

(ii)          设n=k时,3°式成立,

³1-()

则当n=k+1时,

³(1-())·()

=1-()-+()

³1-(+)即当n=k+1时,3°式也成立。

故对一切nÎN*,3°式都成立。

利用3°得,³1-()=1-

=1->

故2°式成立,从而结论成立。

点击展开完整题目
试题详情
科目:,来源:,题型:

b2(x1-x2)2x+a2(y1-y2)2y=0

   

\b2x2+a2y2-b2cx=0…………(3)

2°当AB垂直于x轴时,点P即为点F,满足方程(3)

故所求点P的轨迹方程为:b2x2+a2y2-b2cx=0

(2)因为,椭圆  Q右准线l方程是x=,原点距l

的距离为,由于c2=a2-b2,a2=1+cosq+sinq,b2=sinq(0<q£)

=2sin(+)

当q=时,上式达到最大值。此时a2=2,b2=1,c=1,D(2,0),|DF|=1

设椭圆Q:上的点 A(x1,y1)、B(x2,y2),三角形ABD的面积

S=|y1|+|y2|=|y1-y2|

设直线m的方程为x=ky+1,代入中,得(2+k2)y2+2ky-1=0

由韦达定理得y1+y2,y1y2

4S2=(y1-y2)2=(y1+y2)2-4 y1y2

令t=k2+1³1,得4S2,当t=1,k=0时取等号。

因此,当直线m绕点F转到垂直x轴位置时,三角形ABD的面积最大。

22、(本大题满分14分)

已知数列{an}满足:a1,且an

(3)    求数列{an}的通项公式;

(4)    证明:对于一切正整数n,不等式a1·a2·……an<2·n!

点击展开完整题目
试题详情
科目:,来源:,题型:

21、解:如图,(1)设椭圆Q:(a>b>0)

上的点A(x1,y1)、B(x2,y2),又设P点坐标为P(x,y),则

1°当AB不垂直x轴时,x1¹x2

点击展开完整题目
试题详情
科目:,来源:,题型:

21、(本大题满分12分)

如图,椭圆Q:(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点

(3)    求点P的轨迹H的方程

(4)    在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?

点击展开完整题目
试题详情
科目:,来源:,题型:

20、解法一:

(1)    方法一:作AH^面BCD于H,连DH。

AB^BDÞHB^BD,又AD=,BD=1

\AB==BC=AC  \BD^DC

又BD=CD,则BHCD是正方形,则DH^BC\AD^BC

方法二:取BC的中点O,连AO、DO

则有AO^BC,DO^BC,\BC^面AOD

\BC^AD

(2)    作BM^AC于M,作MN^AC交AD于N,则ÐBMN就是二面角B-AC-D的平面角,因为AB=AC=BC=\M是AC的中点,且MN¤¤CD,则BM=,MN=CD=,BN=AD=,由余弦定理可求得cosÐBMN=

\ÐBMN=arccos

(3)    设E是所求的点,作EF^CH于F,连FD。则EF¤¤AH,\EF^面BCD,ÐEDF就是ED与面BCD所成的角,则ÐEDF=30°。设EF=x,易得AH=HC=1,则CF=x,FD=,\tanÐEDF=解得x=,则CE=x=1

故线段AC上存在E点,且CE=1时,ED与面BCD成30°角。

解法二:此题也可用空间向量求解,解答略

点击展开完整题目
试题详情
科目:,来源:,题型:

20、(本小题满分12分)

如图,在三棱锥A-BCD中,侧面ABD、ACD

是全等的直角三角形,AD是公共的斜边,

且AD=,BD=CD=1,另一个侧面是正三角形

(4)    求证:AD^BC

(5)    求二面角B-AC-D的大小

(6)    在直线AC上是否存在一点E,使ED与面BCD

成30°角?若存在,确定E的位置;若不存在,说明理由。

点击展开完整题目
试题详情
关闭