【例1】            已知数列{an}、{bn}都是等差数列,a1=0、b1= -4,用Sk分别表示数列{an}、{bn}的前k项和(k是正整数),若Sk+=0,则ak+bk的值为             

 

 

试题详情>>

【例2】  若=1,则sin2θ的值等于                     

 

 

试题详情>>

【例3】  若关于x的方程=k(x-2)有两个不等实根,则实数k的取值范围是      

 

 

 

我们只须把题中的参变量用特殊值(或特殊函数、特殊角、

特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论。

试题详情>>

1.特殊值法

【例4】  设a>b>1,则logab,logba,logabb的大小关系是                          

 

 

试题详情>>

2.特殊函数法

【例5】  如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t),那么f(1),f(2),f(4)的大小关系是                       

试题详情>>

3.特殊角法

【例6】  cos2α+cos2(α+120°)+cos2(α+240°)的值为                               

试题详情>>

4.特殊数列法

试题详情>>

【例7】已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则的值是                  

 

试题详情>>

5.特殊点法

试题详情>>

【例8】  椭圆+=1的焦点为F1、F2,点P为其上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是                     

 

试题详情>>

7.特殊模型法

【例9】  已知m,n是直线,α、β、γ是平面,给出下列是命题:

①若α⊥γ,β⊥γ,则α∥β;②若n⊥α,n⊥β,则α∥β;

③若α内不共线的三点到β的距离都相等,则α∥β;

试题详情>>

④若nα,mα且n∥β,m∥β,则α∥β;

⑤若m,n为异面直线,n∈α,n∥β,m∈β,m∥α,则α∥β;

则其中正确的命题是                         。(把你认为正确的命题序号都填上)。

 

 

练习

试题详情>>

1.函数f(x)=|x2-a| 在区间[-1,1]上的最大值M(a)的最小值是        

 

 

试题详情>>

2.如图,非零向量轴正半轴的夹角分

试题详情>>

别为 ,且,则

试题详情>>

轴正半轴的夹角的取值范围是      

 

 

 

试题详情>>

3.已知函数的定义域是,值域是,则满足条件的整数对共有_________________个

 

试题详情>>

4.三角形ABC中AP为BC边上的中线,,则    

试题详情>>

5.如图1,设P、Q为△ABC内的两点,且,则△ABP的面积与△ABQ的面积之比为       

 

 

               

图1                          图2

 

试题详情>>

6.已知f (x)=x+1,g (x)=2x+1,数列{an}满足:a1=1,an1=则数列{an}的前2007项的和为           

 

试题详情>>

7.在直三棱柱ABC-A1B1C1中,底面为直角三角形,ÐACB=90°,AC=6,BC=CC1,P是BC1上一动点,则CP+PA1的最小值是___________.

 

试题详情>>

8.已知函数f(x)、g(x)满足x∈R时,f′(x)>g′(x),

则x1<x2时,则f(x1)-f(x2)___ g(x1)-g(x2).(填>、<、=)

 

试题详情>>

9.△ABC内接于以O为圆心的圆,且

试题详情>>

       

 

试题详情>>

10.若关于x的方程有不同的四解,则a的取值范围为          

 

试题详情>>

11.已知为正整数,方程的两实根为,且,则的最小值为________________.

 

 

试题详情>>

12.如图,在中,,l为BC

试题详情>>

的垂直平分线,E为l上异于D的一点,则等于____.

 

 

 

试题详情>>

13.O为坐标原点,正△OAB中A、B在抛物线上,正△OCD中C、D在抛物线上,则△ OAB与△OCD的面积之比为          

试题详情>>

14.已知二次函数fx)=x2-2x+6,设向量a=(sinx,2),b=(2sinx),c=(cos2x,1),d=(1,2).当x∈[0,π]时,不等式fa・b)>fcd)的解集为___________.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

第二部分    解答题

试题详情>>

例1.已知函数为实常数.

试题详情>>

(1)a在什么范围内时,只有一个公共点?

试题详情>>

(2)若上有最小值2,求a的值.

 

 

试题详情>>

例2.椭圆的两焦点为,(为坐标原点),P为椭圆上一点, 的斜率分别为

试题详情>>

(1)求证:

试题详情>>

(2)若△的面积为3,求椭圆方程.

 

 

 

 

试题详情>>

例3、设函数f (x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈,(a为实数)(1)求当x∈时f (x)的解析式;(2)若f (x)在区间上为增函数,求a的取值范围;(3)求在上f (x)的最大值。

 

 

 

 

 

 

 

 

 

 

试题详情>>

例4. 已知b>-1,c>0,函数f (x)=x+b的图象与函数g (x)=x2+bx+c的图象相切。(1)设b=h(c),求h(c);(2)设 (x>-b)在上是增函数,求c的最小值;(3)是否存在常数c,使得函数H(x)= f (x) g (x)在内有极值点?若存在,求出c的取值范围,若不存在,说明理由。

 

 

 

 

 

试题详情>>

例5.某地区1986年以来人口总数和居民住宅总面积分别按等比数列和等差数列逐年递增.已知1986年底人均住房面积为10,2006年底人均住房面积为20.据此计算:

试题详情>>

(1)1996年底人均住房面积超过14,试给出证明;

(2)若人口年平均增长率不超过3?,能否确保2008年底人均住房面积比2006年底有所增加?为什么?

 

 

 

 

 

 

试题详情>>

例6.已知在R上单调递增,记的三内角的对应边分别为,若成等差数列时,不等式恒成立.

试题详情>>

(1)求实数的取值范围;(2)求角B的取值范围;(3)求实数的取值范围.

 

 

 

 

 

试题详情>>

例7.已知,数列满足

试题详情>>

试题详情>>

(1)求证:数列是等比数列;

试题详情>>

(2)当n取何值时,取最大值,并求出最大值;

试题详情>>

(3)若对任意恒成立,求实数的取值范围.

 

 

 

 

 

试题详情>>

例8.在△ABC中,已知A(0,1),B(0,-1),AC、BC两边所在的直线分别与x轴交于E、F两点,且=4.

(1)求点C的轨迹方程;

试题详情>>

(2)若

①试确定点F的坐标;

②设P是点C的轨迹上的动点,猜想△PBF的周长最大时点P的位置,并证明你的猜想.

 

 

 

 

 

试题详情>>

例9.第一行是等差数列0,1,2,3,…,2008,将其相邻两项的和依次写下作为第二行,第二行相邻两项的和依次写下作为第三行,依此类推,共写出2009行.

试题详情>>

 

 

 

 

 

试题详情>>

(1)求证:第1行至第2008行各行都构成等差数列.(定义只有两项的数列也称等差数列);

试题详情>>

(2)各行的公差组成数列.求通项公式

试题详情>>

(3)各行的第一个数组成数列,求通项公式

(4)求2009行的这个数.

 

 

 

 

 

 

 

试题详情>>

例10.已知集合

试题详情>>

(1)求

试题详情>>

(2)若以为首项,为公比的等比数列前项和记为,对于任意的,均有,求的取值范围.

 

 

 

 

试题详情>>

例11.设轴、轴正方向上的单位向量分别是,坐标平面上点分别满足下列两个条件:

试题详情>>

;②

试题详情>>

(1)求的坐标;

试题详情>>

(2)若四边形的面积是,求的表达式;

试题详情>>

(3)对于(2)中的,是否存在最小的自然数M,对一切都有<M成立?若存在,求M;若不存在,说明理由.

 

 

 

 

试题详情>>

例12.函数的定义域为,设

试题详情>>

(1)求证:

试题详情>>

(2)确定t的范围使函数上是单调函数;

试题详情>>

(3)求证:对于任意的,总存在,满足;并确定这样的的个数.

 

 

 

 

 

 

试题详情>>

例13 已知二次函数f (x)=ax2+bx+c (a>0)的图象与x轴有两个不同的交点,若f (c)=0,且0<x<c时,f (x)>0(1)试比较与c的大小;(2)证明:-2<b<-1;(3)当c>1,t>0时,求证:

 

 

 

试题详情>>

1.  设数列{an}、{bn}分别为正项等比数列,Sn、Tn分别为{lgan}与{lgbn}的前n项的和,且,则=       

试题详情>>

2.  已知函数的图象与直线y=-1的交点中距离最近的两点间的距离为,则函数的最小正周期为__________

试题详情>>

3.  已知,则代数式的值在哪两个相邻的整数之间?

 

 

 

 

试题详情>>

4.  已知==//,θ∈(0,)。(1)求kθ的关系式k=f(θ);(2)求k=f(θ)的最小值。

 

 

 

 

试题详情>>

5.  如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,

试题详情>>

∠ADC=900 ,AD//BC,AB⊥AC,AB=AC=2,G为△PAC的重心,E为PB的中点,F在棱BC上且CF=2FB。

(1)       求证:FG//平面PAB;

(2)       求证:FG⊥AC

(3)       当∠PDA多大时,FG⊥平面AEC。

 

 

 

 

 

 

 

 

试题详情>>

6.  已知 函数F(x)= -x3+ax2+b (a,b∈R)。(1)若设函数y=F(x)的图象上任意两个不同的点的连线的斜率小于1,求证:|a|<;(2)若x∈[0,1],设函数y=F(x)的图象上任意一点处的切线的斜率为k,试讨论|k|≤1成立的充要条件。

 

 

 

 

 

试题详情>>

【例2】            已知数列{an}、{bn}都是等差数列,a1=0、b1= -4,用Sk分别表示数列{an}、{bn}的前k项和(k是正整数),若Sk+=0,则ak+bk的值为             

试题详情>>

【例2】  若=1,则sin2θ的值等于                     

试题详情>>

【解】  由-=1得sinθ-cosθ=sinθcosθ   ①

试题详情>>

令sin2θ=t,则①式两边平方整理得t2+4t-4=0,解之得t=2-2。

试题详情>>

【例3】  若关于x的方程=k(x-2)有两个不等实根,则实数k的取值范围是      

试题详情>>

【解】  令y1=,y2=k(x-2),由图可知kAB<k≤0,

试题详情>>

其中AB为半圆的切线,计算kAB= -,∴-<k≤0。

我们只须把题中的参变量用特殊值(或特殊函数、特殊角、

特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论。

试题详情>>

1.特殊值法

【例4】  设a>b>1,则logab,logba,logabb的大小关系是                          

试题详情>>

【解】  考虑到三个数的大小关系是确定的,不妨令a=4,b=2,则logab=,logba=2,logabb=,

∴logabb<logab<logba

试题详情>>

2.特殊函数法

【例5】  如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t),那么f(1),f(2),f(4)的大小关系是                       

【解】  由于f(2+t)=f(2-t),故知f(x)的对称轴是x=2。可取特殊函数f(x)=(x-2)2,即可求得f(1)=1,f(2)=0,f(4)=4。∴f(2)<f(1)<f(4)。

试题详情>>

3.特殊角法

【例6】  cos2α+cos2(α+120°)+cos2(α+240°)的值为                               

试题详情>>

【解】  本题的隐含条件是式子的值为定值,即与α无关,故可令α=0°,计算得上式值为

试题详情>>

4.特殊数列法

试题详情>>

【例7】已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则的值是                  

试题详情>>

【解】  考虑到a1,a3,a9的下标成等比数列,故可令an=n满足题设条件,于是=

试题详情>>

5.特殊点法

试题详情>>

【例8】  椭圆+=1的焦点为F1、F2,点P为其上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是                     

试题详情>>

【解】  设P(x,y),则当∠F1PF2=90°时,点P的轨迹方程为x2+y2=5,由此可得点P的横坐标x=±,又当点P在x轴上时,∠F1PF2=0;点P在y轴上时,∠F1PF2为钝角,由此可得点P横坐标的取值范围是-<x<

试题详情>>

7.特殊模型法

【例9】  已知m,n是直线,α、β、γ是平面,给出下列是命题:

①若α⊥γ,β⊥γ,则α∥β;②若n⊥α,n⊥β,则α∥β;

③若α内不共线的三点到β的距离都相等,则α∥β;

试题详情>>

④若nα,mα且n∥β,m∥β,则α∥β;

⑤若m,n为异面直线,n∈α,n∥β,m∈β,m∥α,则α∥β;

则其中正确的命题是                         。(把你认为正确的命题序号都填上)。

试题详情>>

【解】  依题意可构造正方体AC1,如图1,在正方体中逐一判断各命题易得正确命题的是②⑤。

          

 

 

 

 

 

          

 

图1                                 图2

练习

试题详情>>

1.函数f(x)=|x2-a| 在区间[-1,1]上的最大值M(a)的最小值是        

试题详情>>

【解析】f(x)是偶函数,所以M(a)是在[0,1]内的最大值,当a≤0时,f(x)=x2-a,则M(a)=1-a;当a>0时,由图像可知,若,则M(a)=a,若,则M(a)=f(1)=1-a,

试题详情>>

从而M(a)= ,    M(a)min

试题详情>>

2.如图,非零向量轴正半轴的夹角分

试题详情>>

别为 ,且,则

试题详情>>

轴正半轴的夹角的取值范围是      

试题详情>>

【解析】轴正半轴的夹角的取值范围应在向量

试题详情>>

  轴正半轴的夹角之间,故轴正半轴的夹角的取值范围是

试题详情>>

3.已知函数的定义域是,值域是,则满足条件的整数对共有_________________个

试题详情>>

【解析】在R上是偶函数,故的图象关于y轴对称,作出的图象,截取值域是 的一段,发现a,b的取值只可能在-2,-1,0,1,2中取得,但必须取0,-2?2必须至少取一个,故有5个.

试题详情>>

4.三角形ABC中AP为BC边上的中线,,则    

试题详情>>

【解析】,即

试题详情>>

,故选C.

试题详情>>

5.如图1,设P、Q为△ABC内的两点,且,则△ABP的面积与△ABQ的面积之比为       

 

 

               

图1                          图2

试题详情>>

【解析】如图2,设,则.由平行四边形法则,知NP∥AB,所以,同理可得.故

试题详情>>

6.已知f (x)=x+1,g (x)=2x+1,数列{an}满足:a1=1,an1=则数列{an}的前2007项的和为           

【解析】∵a2n2=a2n1+1=(2a2n+1)+1=2a2n+2,∴a2n2+2==2(a2n+2),

∴数列{a2n+2}是以2为公比、以a2=a1+1=2为首项的等比数列.

试题详情>>

∴a2n+2=2×2 n1,∴a2n=2 n-2.

又a2n+a2n1= a2n2a2n+1=3a2n+1,∴数列{an}的前2007项的和为

a1+( a2+ a3)+ ( a4+ a5)+ ( a6+ a7)+ …+ ( a2006+ a2007

= a1+(3a2+1)+ (3a4+1)+ (3a6+1)+ …+ (3a2006+1)

= 1+(3×2-5)+ (3×22-5)+ (3×23-5)+ …+ (3×21003-5)

= 1+(3×2-5)+ (3×22-5)+ (3×23-5)+ …+ (3×21003-5)

= 3×(2+22+23+…+21003+1-5×1003

=6×(21003-1)+1-5×1003=6×21003- 5020 ,故选D.

试题详情>>

7.在直三棱柱ABC-A1B1C1中,底面为直角三角形,ÐACB=90°,AC=6,BC=CC1,P是BC1上一动点,则CP+PA1的最小值是___________.

【解析】答案:5 .连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,连A1C,则A1C的长度就是所求的最小值.通过计算可得ÐA1C1C=90°.

试题详情>>

又ÐBC1C=45°,\ÐA1C1C=135° 由余弦定理,可求得A1C=5.

试题详情>>

8.已知函数f(x)、g(x)满足x∈R时,f′(x)>g′(x),

则x1<x2时,则f(x1)-f(x2)___ g(x1)-g(x2).(填>、<、=)

试题详情>>

【解析】记,则

试题详情>>

由已知,,所以在R上单调递增,

试题详情>>

所以x1<x2时,,即f(x1)-f(x2) < g(x1)-g(x2).

试题详情>>

9.△ABC内接于以O为圆心的圆,且

试题详情>>

        

试题详情>>

【解析】通过画图,可求,即的夹角,再通过圆心角与圆周角的关系,求得,答案:

试题详情>>

10.若关于x的方程有不同的四解,则a的取值范围为          

试题详情>>

【解析】x=0是方程的一个根,其余根即方程(x>0)的根.

试题详情>>

由f(x)=(x>0)与y=1的交点个数,可知a>0.

试题详情>>

且f()>1,得a>2.

试题详情>>

11.已知为正整数,方程的两实根为,且,则的最小值为________________.

试题详情>>

【解析】提示:依题意,可知 从而可知,所以有

试题详情>>

 又为正整数,取,则

试题详情>>

,所以.从而,所以

试题详情>>

,所以,因此有最小值为

试题详情>>

下面可证时,,从而,所以

试题详情>>

,所以,所以

试题详情>>

综上可得,的最小值为11.

试题详情>>

12.如图,在中,,l为BC

试题详情>>

的垂直平分线,E为l上异于D的一点,则等于____.

试题详情>>

【解析】,又

试题详情>>

13.O为坐标原点,正△OAB中A、B在抛物线上,正△OCD中C、D在抛物线上,则△ OAB与△OCD的面积之比为         

试题详情>>

【解析】设△OAB的边长为,则不妨设,代入,得;同理,设△OCD的边长为,可得

试题详情>>

14.已知二次函数fx)=x2-2x+6,设向量a=(sinx,2),b=(2sinx),c=(cos2x,1),d=(1,2).当x∈[0,π]时,不等式fa・b)>fcd)的解集为___________.

【解析】ab=2sin2x+1≥1, cd=cos2x+1≥1 ,fx)图象关于x=1对称,

fx)在(1,+∞)内单调递增.

试题详情>>

fab)>fcdab>cd,即2sin2x+1>2cos2x+1,

试题详情>>

又∵x∈[0,π] ,∴x∈().故不等式的解集为().

第二部分    解答题

试题详情>>

例1.已知函数为实常数.

试题详情>>

(1)a在什么范围内时,只有一个公共点?

试题详情>>

(2)若上有最小值2,求a的值.

试题详情>>

【解析】(1)

试题详情>>

①当时,,所以在R上单调增,此时只有一个公共点;

试题详情>>

②当时, .由,得

试题详情>>

上列表:

试题详情>>

0

­­­─

0

试题详情>>

极大值

极小值

试题详情>>

因为只有一个公共点,所以

试题详情>>

所以,得

试题详情>>

综上,只有一个公共点.

试题详情>>

(2)

试题详情>>

,可知为偶函数,则原题即为上有最小值2.

试题详情>>

),则

试题详情>>

时,,所以上单调增,所以

试题详情>>

因为上有最小值2,所以,所以

试题详情>>

时,,无最小值,不合题意.

试题详情>>

时,

试题详情>>

(I)时,,所以上单调减,所以

试题详情>>

此时上的最小值为,不合.

试题详情>>

(II)时,由,得

试题详情>>

上列表:

试题详情>>

0

­­+

 

试题详情>>

极小值

试题详情>>

综上,的值为

试题详情>>

例2.椭圆的两焦点为,(为坐标原点),P为椭圆上一点, 的斜率分别为

试题详情>>

(1)求证:

试题详情>>

(2)若△的面积为3,求椭圆方程.

【解析】解法一   (1) 依题意,

试题详情>>

,则

试题详情>>

.∴,所以

试题详情>>

(2)在Rt△中,

试题详情>>

所以

试题详情>>

所以椭圆方程为

试题详情>>

解法二  (1)令,由题意,得

试题详情>>

,     ①            .       ②

试题详情>>

由①、②,可知

试题详情>>

,∴

试题详情>>

例3、设函数f (x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈,(a为实数)(1)求当x∈时f (x)的解析式;(2)若f (x)在区间上为增函数,求a的取值范围;(3)求在上f (x)的最大值。

试题详情>>

解:(1)设x∈,则-x∈,又f (x)为奇函数,则f (x)= - f (-x)=

试题详情>>

∴当x∈时f (x)=

试题详情>>

(2)由于f (x)在上为增函数,则f / (x)=

试题详情>>

显然,上式对任意的x∈恒成立,即对任意的x∈恒成立,

可得:a>-1

试题详情>>

(3)当a>-1时,由于f (x)在x∈上为增函数,则f (x)max= f (1)=2a-1

试题详情>>

当a<-1时由f / (x)=0得:x=(此时),

试题详情>>

且知当x∈(0,)时, f / (x)>0, 当x∈(,1), f / (x)<0

试题详情>>

∴f (x)max= f ()=

试题详情>>

例4. 已知b>-1,c>0,函数f (x)=x+b的图象与函数g (x)=x2+bx+c的图象相切。(1)设b=h(c),求h(c);(2)设 (x>-b)在上是增函数,求c的最小值;(3)是否存在常数c,使得函数H(x)= f (x) g (x)在内有极值点?若存在,求出c的取值范围,若不存在,说明理由。

思路点击:本题材不论从函数类型,还是从涉及的函数内容角度欣赏都非常象高考题,尤其是第(3)题中的探索型问题使题目更显时尚和有档次,不过越是华丽的题目,解法往往越平易近人。

试题详情>>

解:(1)依题设令f / (x)= g / (x),即2x+b=1, ∴x=为切点横坐标。

试题详情>>

∴f ()= g (),故(b+1)2=4c,即b= h(c)=

试题详情>>

(2)∵=,∴D / (x)=

试题详情>>

由于D (x)在上是增函数,

试题详情>>

∴D / (x)=()()≥0在上恒成立。又x>-b ,c>0

试题详情>>

≥0在上恒成立,即

试题详情>>

而由(1)得,+,∴

试题详情>>

∵函数t=1-x在上的最大值为2,∴,即c≥4

∴c的最小值为4。

(3)由H(x)= f (x) g (x)=x3+2bx2+(b2+c)x+bc得H /(x)= 3x2+4bx+b2+c

试题详情>>

令H /(x)=0得:△=4(b2-3c)=(c-4+1)>0,即c-4+1>0

试题详情>>

解得:<2-,或>2+,又∵c>0 ∴0<c<7-4或c>7+4

试题详情>>

∴存在常数c∈(0,7-4)∪(7+4,+∞),使H(x)在内有极值点。

点评:导数的加盟,大大拓展了命制函数类探索题的空间,从两个样题来看,函数类的探索题的解决离不开函数的主体知识,因此夯实函数“三基”就可以以不变应万变。

试题详情>>

例5.某地区1986年以来人口总数和居民住宅总面积分别按等比数列和等差数列逐年递增.已知1986年底人均住房面积为10,2006年底人均住房面积为20.据此计算:

试题详情>>

(1)1996年底人均住房面积超过14,试给出证明;

(2)若人口年平均增长率不超过3?,能否确保2008年底人均住房面积比2006年底有所增加?为什么?

试题详情>>

【解析】(1)设86年底人口总数为a,住宅总面积10a,年人口增长的公比为(即后一年是前一年人口的倍),年住宅总面积的公差为,则2006年底人均住房面积为,则,故1996年底人均住房面积

试题详情>>

(2)2008年底人均住房面积

试题详情>>

2008年与2006年底人均住房面积之差

试题详情>>

,∴只需考虑分子

试题详情>>

,∴单调递减.

试题详情>>

此即表明,2008年底人均住房面积仍超过2006年底人均住房面积.

 

试题详情>>

例6.已知在R上单调递增,记的三内角的对应边分别为,若成等差数列时,不等式恒成立.

试题详情>>

(1)求实数的取值范围;(2)求角B的取值范围;(3)求实数的取值范围.

试题详情>>

(1)由在R上单调递增,恒成立,,即; 当,即时,时,,即当时,能使在R上单调递增,∴

试题详情>>

(2)成等差数列,∴,由余弦定理:cosB==

试题详情>>

=,∴

试题详情>>

(3) 在R上单调递增,且

试题详情>>

所以,即

试题详情>>

,即,即,即

试题详情>>

例7.已知,数列满足

试题详情>>

试题详情>>

(1)求证:数列是等比数列;

试题详情>>

(2)当n取何值时,取最大值,并求出最大值;

试题详情>>

(3)若对任意恒成立,求实数的取值范围.

试题详情>>

【解析】(1)∵

试题详情>>

,即

试题详情>>

    又,可知对任何,所以

试题详情>>

    ∵,∴是以为首项,公比为的等比数列.

试题详情>>

    (2)由(I),可知).

试题详情>>

    ∴

试题详情>>

    当n=7时,;当n<7时,;当n>7时,

试题详情>>

∴当n=7或n=8时,取最大值,最大值为

试题详情>>

(3)由,得.       (*)

试题详情>>

依题意,(*)式对任意恒成立,

  ①当t=0时,(*)式显然不成立,因此t=0不合题意.

试题详情>>

  ②当t<0时,由,可知).

试题详情>>

   而当m是偶数时,因此t<0不合题意.

试题详情>>

  ③当t>0时,由),

试题详情>>

,∴).

试题详情>>

  设),

试题详情>>

试题详情>>

  ∴

试题详情>>

  ∴的最大值为.所以实数的取值范围是

试题详情>>

例8.在△ABC中,已知A(0,1),B(0,-1),AC、BC两边所在的直线分别与x轴交于E、F两点,且=4.

(1)求点C的轨迹方程;

试题详情>>

(2)若

①试确定点F的坐标;

②设P是点C的轨迹上的动点,猜想△PBF的周长最大时点P的位置,并证明你的猜想.

试题详情>>

【解析】(1)如图,设点C(x,y)(x≠0),E(xE,0),F(xF,0),由A,C,F三点共线,,xE.同理,由B、C、F三点共线可得xF

化简,得点C的轨迹方程为x2+4y2-4(x≠0).

试题详情>>

=4,∴xE・xF=4.

试题详情>>

(2)若

①设F(xF,0),C(xC,yC),

试题详情>>

(xc,yc+1)=-8(xF-xc,yc).

试题详情>>

∴xc,yC

试题详情>>

代入x2+4y2=4, 得xF=±.∴F(±,0),即F为椭圆的焦点.

试题详情>>

②猜想:取F(,0),设F1(-,0)是左焦点,则当P点位于直线BF1与椭圆的交点处时,△PBF周长最大,最大值为8.

证明如下:|PF|+|PB|=4-|PF1|+|PB|≤4+|BF1|,

试题详情>>

∴△PBF的周长≤4+|BF1|+|BF|≤8.

试题详情>>

例9.第一行是等差数列0,1,2,3,…,2008,将其相邻两项的和依次写下作为第二行,第二行相邻两项的和依次写下作为第三行,依此类推,共写出2009行.

试题详情>>

 

 

 

 

试题详情>>

(1)求证:第1行至第2008行各行都构成等差数列.(定义只有两项的数列也称等差数列);

试题详情>>

(2)各行的公差组成数列.求通项公式

试题详情>>

(3)各行的第一个数组成数列,求通项公式

(4)求2009行的这个数.

试题详情>>

【解析】(1)记表示第行第列的项.由已知知第1行是等差数列;

试题详情>>

所以第2行数列是等差数列.

试题详情>>

所以第3行数列是等差数列.

同理可证,第4,5,…,都是等差数列.

试题详情>>

(2)

试题详情>>

,则是等差数列,

试题详情>>

(3)

试题详情>>

∴数列是等差数列,,所以

试题详情>>

(4)

试题详情>>

例10.已知集合

试题详情>>

(1)求

试题详情>>

(2)若以为首项,为公比的等比数列前项和记为,对于任意的,均有,求的取值范围.

试题详情>>

【解析】(1)由

试题详情>>

时,.当时, ,当时,

试题详情>>

综上,时,时,;当时,

试题详情>>

(2)当时,.而,故时,不存在满足条件的

试题详情>>

时,,而是关于的增函数,所以的增大而增大,当且无限接近时,对任意的,只须满足

试题详情>>

 解得

试题详情>>

 当时,

试题详情>>

显然,故不存在实数满足条件.

试题详情>>

     当时,,适合.

试题详情>>

时,

试题详情>>

故只需 解得

试题详情>>

综上所述,的取值范围是

试题详情>>

例11.设轴、轴正方向上的单位向量分别是,坐标平面上点分别满足下列两个条件:

试题详情>>

;②

试题详情>>

(1)求的坐标;

试题详情>>

(2)若四边形的面积是,求的表达式;

试题详情>>

(3)对于(2)中的,是否存在最小的自然数M,对一切都有<M成立?若存在,求M;若不存在,说明理由.

试题详情>>

【解析】(1)

试题详情>>

(2)

试题详情>>

(3)

试题详情>>

试题详情>>

 ,等等.

试题详情>>

即在数列中,是数列的最大项,所以存在最小的自然数,对一切,都有<M成立.

试题详情>>

例12.函数的定义域为,设

试题详情>>

(1)求证:

试题详情>>

(2)确定t的范围使函数上是单调函数;

试题详情>>

(3)求证:对于任意的,总存在,满足;并确定这样的的个数.

试题详情>>

【解析】(1)设,则,所以

试题详情>>

(2),令,得

试题详情>>

时,时,是递增函数;

试题详情>>

时,显然也是递增函数.

试题详情>>

的一个极值点,∴当时,函数上不是单调函数.

试题详情>>

∴当时,函数上是单调函数.

试题详情>>

(3)由(1),知,∴

试题详情>>

又∵, 我们只要证明方程内有解即可.

试题详情>>

试题详情>>

①当时,

试题详情>>

方程内有且只有一解;

试题详情>>

②当时,

试题详情>>

,∴方程内分别各有一解,方程内两解;

试题详情>>

③当时,方程内有且只有一解

试题详情>>

④当时,方程内有且只有一解

试题详情>>

综上,对于任意的,总存在,满足

试题详情>>

时,满足有且只有一个;

试题详情>>

时,满足恰有两个.

试题详情>>

例13 已知二次函数f (x)=ax2+bx+c (a>0)的图象与x轴有两个不同的交点,若f (c)=0,且0<x<c时,f (x)>0(1)试比较与c的大小;(2)证明:-2<b<-1;(3)当c>1,t>0时,求证:

解:(1)∵函数f (x)的图象与x轴有两个不同的交点∴方程f (x)=0有两个不同的根

∵f (c)=0,∴c是方程f (x)=0的一个根

试题详情>>

设方程的另一个根为x0,则cx0=,得x0=

试题详情>>

<c,则由0<x<c时,f (x)>0得f ()>0与f ()=0矛盾。又方程f (x)=0有两个不同的实根,∴≠c,∴>c

(2) f (c)=0<==>ac+b+1=0  ∴b=-1-ac<-1

试题详情>>

>c  ∴c<<==>b>-2  ∴-2<b<-1

(3) ∵0<1<c∴f (1)>0即:a+b+c>0==>b>-a-c

试题详情>>

>c,c>1  ∴a<<1==>a<c  ∴

试题详情>>

8.  设数列{an}、{bn}分别为正项等比数列,Sn、Tn分别为{lgan}与{lgbn}的前n项的和,且,则=       

试题详情>>

9.  已知函数的图象与直线y=-1的交点中距离最近的两点间的距离为,则函数的最小正周期为( C )

试题详情>>

A.   B.   C.   D.   

试题详情>>

10.已知,则代数式的值在哪两个相邻的整数之间?

试题详情>>

解:由得:,∴

试题详情>>

具体计算,易证数列{xn}是递增的

试题详情>>

∴ 0<<1,∴代数式的值在2和3之间。

试题详情>>

11.已知==//,θ∈(0,)。(1)求kθ的关系式k=f(θ);(2)求k=f(θ)的最小值。()

试题详情>>

12.如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,

试题详情>>

∠ADC=900 ,AD//BC,AB⊥AC,AB=AC=2,G为△PAC的重心,E为PB的中点,F在棱BC上且CF=2FB。

(4)       求证:FG//平面PAB;

(5)       求证:FG⊥AC

(6)       当∠PDA多大时,FG⊥平面AEC。

 

 

 

 

 

试题详情>>

13.已知 函数F(x)= -x3+ax2+b (a,b∈R)。(1)若设函数y=F(x)的图象上任意两个不同的点的连线的斜率小于1,求证:|a|<;(2)若x∈[0,1],设函数y=F(x)的图象上任意一点处的切线的斜率为k,试讨论|k|≤1成立的充要条件。

试题详情>>

解:(1)函数y=F(x)的图象上任意两个不同的点为P1、P2且x1≠x2,则<1,即:

试题详情>>

<==>,∵x1是任意实数,∴ △1=

试题详情>>

即: ∵x2是任意实数,∴ △2=4a2+12(a2-4)<0  ∴|a|<

(2)当x∈[0,1]时,k=F /(x)=-3x2+2ax,则题意得:-1≤-3x2+2ax≤1当x∈[0,1]都成立。

试题详情>>

若x=0,则a∈R;若x≠0,则

试题详情>>

 ∵在上,是增函数,∴

试题详情>>

,当x=时取等号,∴2≤2a≤2即:1≤a≤

试题详情>>

∴使|k|≤1成立的充要条件是1≤a≤

另解(2)|k|≤1成立的充要条件是F /(x)=-3x2+2ax (0≤x≤1)的最大值M≤2,最小值m≥-1

试题详情>>

F /(x)=-3x2+2ax=F /(0)=0

试题详情>>

解得:1≤a≤

试题详情>>

14.已知函数f (x)=,其中a是大于零的常数,(1)求函数f (x)的定义域;(2)当a∈(1,4)时,求函数f (x)在上的最小值;(3)若对任意x∈,恒有f (x)>0,试确定a的取值范围。

试题详情>>

解:(1)由得(*) 方程x2-2x+a=0的判别式△=4(1-a)

∴当a>1时,△<0 ,x2-2x+a>0恒成立,∴由(*)得:函数的定义域为(0,+∞)

试题详情>>

  当0<a≤1时,△≥0, 方程x2-2x+a=0有两个根:x1=1-, x2=1+

试题详情>>

∴由(*)得:函数的定义域为:(0, 1-)∪( 1+,+ ∞)

试题详情>>

(2)当a∈(1,4)时,令g(x)= ,易证g(x)在(0,上递减,在上递增。

试题详情>>

a∈(1,4), ∴<2,∴g(x)在上递增,∴f (x)在上递增

试题详情>>

∴函数f (x)在上的最小值为f (2)=

试题详情>>

(3)①若0<a≤1时,则x=2时,f (2)=<0,不满足条件;

试题详情>>

②若1<a<4时,由(2)得f (x)在上的最小值,只要>0, ∴2<a<4;

试题详情>>

③若a≥4时,得f (x)在上的最小值,此时>0恒成立。

试题详情>>

综上所述,对任意x∈,恒有f (x)>0成立的a的取值范围为(2,+∞)。

试题详情>>

 (3)又解:∵f (x)= >0,∴ a>3x-x2上恒成立,

试题详情>>

  ∵y=3x-x2上是减函数,∴ymax= f (2)=2,∴a>2

试题详情>>

8.设a,b,c是一个三角形的三条边的长,且a+b+c=1。

试题详情>>

(1)证明:a,b,c均小于;(2)若a≥b≥c,对于整数n≥2,证明:bn+cn<(b+)n

试题详情>>

(3)证明:对于整数n≥2,

试题详情>>

证明:(1)不妨设a≥b≥c,那么b+c>a,而a+b+c=1, ∴a+b+c>2a,∴a<

试题详情>>

∴a,b,c均小于

试题详情>>

(2)(b+)n=

试题详情>>

   ≥=

试题详情>>

∵n≥2,∴,∴bn+cn<(b+)n

试题详情>>

(3)不妨设a≥b≥c,则由(2)知:bn+cn<(b+)n ,an+cn<(a+)n

试题详情>>

又由(1)知a<,b<,则

试题详情>>

∴1<

 

 

 

试题详情>>
关闭