【题目】已知函数f (x)=lnx,g(x)=ex.
(1)若函数φ (x) = f (x)-
,求函数φ (x)的单调增区间;
(2)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.
【题目】如图所示,在三棱柱
中,
平面
,
,
.
![]()
(1)求证:
平面
;
(2)若
是棱
的中点,在棱
上是否存在一点
,使得
//平面
?若存在,请确定点
的位置:若不存在,请说明理由.
【题目】(本小题满分12分)某商场为了了解顾客的购物信息,随机的在商场收集了100位顾客购物的相关数据,整理如下:
一次购物款(单位:元) | [0,50) | [50,100) | [100,150) | [150,200) | [200,+∞) |
顾客人数 | m | 20 | 30 | n | 10 |
统计结果显示100位顾客中购物款不低于100元的顾客占60%,据统计该商场每日大约有5000名顾客,为了增加商场销售额度,对一次性购物不低于100元的顾客发放纪念品(每人一件).(注:视频率为概率)
(1)试确定
的值,并估计该商场每日应准备纪念品的数量;
(2)为了迎接店庆,商场进行让利活动,一次购物款200元及以上的一次返利30元;一次性购物
款小于200元的按购物款的百分比返利,具体见下表:
一次购物款(单位:元) | [0,50) | [50,100) | [100,150) | [150,200) |
返利百分比 | 0 | 6% | 8% | 10% |
估计该商场日均让利多少元?
【题目】高三十二班同学设计了一个如图所示的“蝴蝶形图案”(阴影区域)来预示在6月的高考中,同学们展翅高飞,其中
是过抛物线
的焦点
的两条弦,且
,点
为
轴上一点,记
,其中
为锐角.
![]()
(1)求抛物线的方程;
(2)当“蝴蝶形图案”的面积最小时,求
的大小.
【题目】下图中(1)(2)(3)(4)为四个平面图形,表中给出了各平面图形中的顶点数边数以及区域数.
![]()
平面图形 | 顶点数 | 边数 | 区域数 |
1 | 3 | 3 | 2 |
2 | 8 | 12 | 6 |
3 | 6 | 9 | 5 |
4 | 10 | 15 | 7 |
现已知某个平面图形有1009个顶点,且围成了1006个区域,试根据以上关系确定这个平面图形的边数为________.
【题目】已知椭圆
:
的离心率为
,且过点
,椭圆
的右顶点为
,点
的坐标为
.
(1)求椭圆
的方程;
(2)已知纵坐标不同的两点
,
为椭圆
上的两个点,且
,
,
三点共线,线段
的中点为
,求直线
的斜率的取值范围.
【题目】如图,正方形
与矩形
所在平面互相垂直,
,点
为线段
上一点.
![]()
(1)若点
是
的中点,求证:
平面
;
(2)若直线
与平面
所成的线面角的大小为
,求
.
【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计得频率分布直方图如图所示.
![]()
(1)经计算估计这组数据的中位数;
(2)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:
A:所有芒果以10元/千克收购;
B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购.
通过计算确定种植园选择哪种方案获利更多?
【题目】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为![]()
=
(
>0),过点
的直线
的参数方程为
(t为参数),直线
与曲线C相交于A,B两点.
(Ⅰ)写出曲线C的直角坐标方程和直线
的普通方程;
(Ⅱ)若
,求
的值.