【题目】在新冠病毒肆虐全球的大灾难面前,中国全民抗疫,众志成城,取得了阶段性胜利,为世界彰显了榜样力量.为庆祝战疫成功并且尽快恢复经济,某网络平台的商家进行有奖促销活动,顾客购物消费每满600元,可选择直接返回60元现金或参加一次答题返现,答题返现规则如下:电脑从题库中随机选出一题目让顾客限时作答,假设顾客答对的概率都是0.4,若答对题目就可获得120元返现奖励,若答错,则没有返现.假设顾客答题的结果相互独立.
(1)若某顾客购物消费1800元,作为网络平台的商家,通过返现的期望进行判断,是希望顾客直接选择返回180元现金,还是选择参加3次答题返现?
(2)若某顾客购物消费7200元并且都选择参加答题返现,请计算该顾客答对多少次概率最大,最有可能返回多少现金?
【题目】牛顿迭代法(Newtonsmethod)又称牛顿-拉夫逊方法(Newton-Raphsonmethod),是牛顿在17世纪提出的一种近似求方程根的方法.如图,设
是
的根,选取
作为
初始近似值,过点
作曲线
的切线
,
与
轴的交点的横坐标
,称
是
的一次近似值,过点
作曲线
的切线,则该切线与
轴的交点的横坐标为![]()
,称
是
的二次近似值.重复以上过程,得到
的近似值序列.请你写出
的
次近似值与
的
次近似值的关系式______,若
,取
作为的初始近似值,试求
的一个根
的三次近似值______(请用分数做答).
![]()
【题目】2020年疫情的到来给我们生活学习等各方面带来种种困难.为了顺利迎接高考,省里制定了周密的毕业年级复学计划.为了确保安全开学,全省组织毕业年级学生进行核酸检测的筛查.学生先到医务室进行咽拭子检验,检验呈阳性者需到防疫部门做进一步检测.已知随机抽一人检验呈阳性的概率为0.2%,且每个人检验是否呈阳性相互独立,若该疾病患病率为0.1%,且患病者检验呈阳性的概率为99%.若某人检验呈阳性,则他确实患病的概率( )
A.0.99%B.99%C.49.5%.D.36.5%
【题目】如图,三棱锥
中,底面△
是边长为2的正三角形,
,
底面
,点
分别为
,
的中点.
![]()
(1)求证:平面
平面
;
(2)在线段
上是否存在点
,使得三棱锥
体积为
?若存在,确定点
的位置;若不存在,请说明理由.
【题目】某中学某社团为研究高三学生课下钻研数学时间与数学考试中的解答题得分的关系,随机调查了某中学高三某班
名学生每周课下钻研数学时间
(单位:小时)与高三下学期期中考试数学解答题得分
,数据如下表:
| 2 | 4 | 6 | 8 | 10 | 12 |
| 30 | 38 | 44 | 48 | 50 | 54 |
(1)根据上述数据,求出数学考试中的解答题得分
与该学生课下钻研数学时间
的线性回归方程,并预测某学生每周课下钻研数学时间为
小时其数学考试中的解答题得分;
(2)从这
人中任选
人,求
人中至少有
人课下钻研数学时间不低于
小时的概率.
参考公式:
,其中
,
;参考数据:![]()
【题目】已知椭圆
的离心率为
,且以原点为圆心,以短轴长为直径的圆
过点
.
(1)求椭圆
的标准方程;
(2)若过点![]()
的直线
与椭圆
交于不同的两点
,且与圆
没有公共点,设
为椭圆
上一点,满足
(
为坐标原点),求实数
的取值范围.
【题目】“克拉茨猜想”又称“
猜想”,是德国数学家洛萨克拉茨在
年世界数学家大会上公布的一个猜想:任给一个正整数
,如果
是偶数,就将它减半;如果
为奇数就将它乘
加
,不断重复这样的运算,经过有限步后,最终都能够得到
,得到
即终止运算,己知正整数
经过
次运算后得到
,则
的值为( )
A.
或
B.
或
C.
D.
或
或![]()