2025年暑期升级训练浙江教育出版社八年级物理教科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑期升级训练浙江教育出版社八年级物理教科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年暑期升级训练浙江教育出版社八年级物理教科版》

1. 跨学科实践 社会发展 (梧州苍梧期末)据有关研究,汽车自身质量每降低100kg,每行驶100km油耗可减少0.6L。为了响应节能减排政策,某型号汽车原来使用的是质量高达1106kg的钢制外壳,现替换成等体积的镁合金材料,质量可减少854kg,已知$\rho_{钢}= 7.9×10^{3}kg/m^{3}$。求:
(1)钢制外壳所用材料的体积。
(2)镁合金材料的密度。
(3)改装后的汽车以100km/h的速度正常行驶10h,不考虑其他因素,可节约汽油的体积。
答案: 解:
(1)已知钢制外壳质量$m_{钢}=1106kg$,$\rho_{钢}=7.9×10^{3}kg/m^{3}$,由$\rho=\frac{m}{V}$可得,钢制外壳所用材料的体积:
$V=\frac{m_{钢}}{\rho_{钢}}=\frac{1106kg}{7.9×10^{3}kg/m^{3}}=0.14m^{3}$
(2)镁合金材料与钢制外壳体积相等,即$V_{镁}=V=0.14m^{3}$,镁合金质量$m_{镁}=m_{钢}-854kg=1106kg - 854kg=252kg$,则镁合金材料的密度:
$\rho_{镁}=\frac{m_{镁}}{V_{镁}}=\frac{252kg}{0.14m^{3}}=1.8×10^{3}kg/m^{3}$
(3)汽车行驶路程$s=vt=100km/h×10h=1000km$,每100km减少油耗0.6L,节约汽油体积:
$V_{节约}=\frac{1000km}{100km}×0.6L=6L$
答:
(1)钢制外壳所用材料的体积为$0.14m^{3}$;
(2)镁合金材料的密度为$1.8×10^{3}kg/m^{3}$;
(3)可节约汽油的体积为6L。
2. 一桶花生调和油的油桶上标有“5L”的字样,小明想知道这桶花生调和油的密度和质量。他用电子秤称一瓶瓶装饮用水的空瓶质量为50g,装满水后总质量为550g;将饮用水瓶里的水倒干净,装满花生调和油,称出装满花生调和油后总质量为500g,则:($\rho_{水}= 1.0×10^{3}kg/m^{3}$)
(1)矿泉水瓶的容积是多少?
(2)花生调和油的密度是多少?
(3)超市里花生调和油的原价为79.2元每桶,现买5L的大桶花生调和油赠送一瓶500mL的同种花生调和油。问:超市促销活动期间,此种花生调和油每千克多少元?
答案: 解:
(1)已知空瓶质量$m_{瓶}=50g$,装满水后总质量$m_{总水}=550g$,则水的质量$m_{水}=m_{总水}-m_{瓶}=550g - 50g=500g$。
因为$\rho=\frac{m}{V}$,且$\rho_{水}=1.0g/cm^{3}$,所以矿泉水瓶的容积$V=V_{水}=\frac{m_{水}}{\rho_{水}}=\frac{500g}{1.0g/cm^{3}} = 500cm^{3}$。
(2)装满花生调和油后总质量$m_{总油}=500g$,则花生调和油的质量$m_{油}=m_{总油}-m_{瓶}=500g - 50g = 450g$。
油的体积$V_{油}=V = 500cm^{3}$,所以花生调和油的密度$\rho_{油}=\frac{m_{油}}{V_{油}}=\frac{450g}{500cm^{3}}=0.9g/cm^{3}=0.9×10^{3}kg/m^{3}$。
(3)5L大桶油的体积$V_{大}=5L = 5dm^{3}=5000cm^{3}$,其质量$m_{大}=\rho_{油}V_{大}=0.9g/cm^{3}×5000cm^{3}=4500g = 4.5kg$。
赠送的500mL油的体积$V_{赠}=500mL = 500cm^{3}$,质量$m_{赠}=\rho_{油}V_{赠}=0.9g/cm^{3}×500cm^{3}=450g = 0.45kg$。
总质量$m_{总}=m_{大}+m_{赠}=4.5kg + 0.45kg=4.95kg$,总价为79.2元,所以每千克价格为$\frac{79.2元}{4.95kg}=16$元/kg。
答:
(1)矿泉水瓶的容积是$500cm^{3}$;
(2)花生调和油的密度是$0.9×10^{3}kg/m^{3}$;
(3)促销期间此种花生调和油每千克16元。
3. 如图所示,A、B两个完全相同的圆柱形容器放在水平桌面上,分别装有相等质量的水和酒精,容器的底面积为30cm^2,A容器内水的深度为20cm。(已知$\rho_{酒精}= 0.8×10^{3}kg/m^{3}$,$\rho_{铁}= 7.9×10^{3}kg/m^{3}$,$\rho_{铝}= 2.7×10^{3}kg/m^{3}$)
(1)求A容器中水的质量$m_{水}$。
(2)求B容器中酒精的体积$V_{酒精}$。
(3)将质量为1580g的空心铁球浸没在水中,质量为270g的实心铝球浸没在酒精中,发现两个容器中的液面一样高,且液体均没有溢出,求铁球空心部分的体积。
答案: 【解析】:
本题可根据密度公式$\rho=\frac{m}{V}$(其中$\rho$表示密度,$m$表示质量,$V$表示体积)及其变形公式来分别求解各问。
(1)求A容器中水的质量$m_{水}$:
已知A容器内水的深度$h_{水}=20cm = 0.2m$,容器的底面积$S = 30cm^{2}=30×10^{-4}m^{2}$,根据圆柱体积公式$V = Sh$,可求出水的体积$V_{水}$,再结合水的密度$\rho_{水}=1.0×10^{3}kg/m^{3}$,利用密度公式的变形公式$m = \rho V$求出水的质量。
(2)求B容器中酒精的体积$V_{酒精}$:
因为A、B两个容器完全相同,分别装有相等质量的水和酒精,所以$m_{酒精}=m_{水}$,已知酒精的密度$\rho_{酒精}= 0.8×10^{3}kg/m^{3}$,根据密度公式的变形公式$V = \frac{m}{\rho}$可求出酒精的体积。
(3)求铁球空心部分的体积:
先根据密度公式求出实心铝球的体积,再根据两个容器中的液面一样高,分别求出水和酒精原来的体积加上球浸没后排开液体的体积,进而得到铁球的实际体积,最后用铁球的总体积减去铁的体积(根据铁球质量求出)得到空心部分的体积。
【答案】:
(1)A容器中水的体积:
$V_{水}=Sh_{水}=30×10^{-4}m^{2}×0.2m = 6×10^{-4}m^{3}$
由$\rho=\frac{m}{V}$可得,A容器中水的质量:
$m_{水}=\rho_{水}V_{水}=1.0×10^{3}kg/m^{3}×6×10^{-4}m^{3}=0.6kg = 600g$
(2)因为$m_{酒精}=m_{水}=600g$,由$\rho=\frac{m}{V}$可得,B容器中酒精的体积:
$V_{酒精}=\frac{m_{酒精}}{\rho_{酒精}}=\frac{600g}{0.8g/cm^{3}} = 750cm^{3}$
(3)实心铝球的体积:
$V_{铝}=\frac{m_{铝}}{\rho_{铝}}=\frac{270g}{2.7g/cm^{3}} = 100cm^{3}$
设铁球空心部分的体积为$V_{空}$,则铁球的实际体积$V_{铁球}=V_{铁}+V_{空}$,其中$V_{铁}=\frac{m_{铁}}{\rho_{铁}}=\frac{1580g}{7.9g/cm^{3}} = 200cm^{3}$。
因为两个容器中的液面一样高,所以$V_{水}+V_{铁球}=V_{酒精}+V_{铝}$,即$600cm^{3}+200cm^{3}+V_{空}=750cm^{3}+100cm^{3}$,
解得$V_{空}=50cm^{3}$。
综上,答案依次为:(1)$600g$;(2)$750cm^{3}$;(3)$50cm^{3}$。

查看更多完整答案,请扫码查看

关闭