2025年轻松暑假复习加预习中国海洋大学出版社八年级数学54制
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年轻松暑假复习加预习中国海洋大学出版社八年级数学54制 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第33页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
18.(10分)(2024·湖北模拟)如图所示,为了测量一栋楼的高度$OE$,小明同学先在操场上$A$处放一面镜子,向后退到$B$处,恰好在镜子中看到楼的顶部$E$;再将镜子放到$C$处,然后后退到$D$处,恰好再次在镜子中看到楼的顶部$E$($O$,$A$,$B$,$C$,$D$在同一条直线上),测得$AC= 2m$,$BD= 2.1m$,如果小明眼睛距地面高度$BF$,$DG为1.6m$,试确定楼的高度$OE$.

答案:
解:
令$OE = a$,$AO = b$,$CB = x$,
则由$\triangle GDC \backsim \triangle EOC$得$\frac{GD}{EO} = \frac{CD}{OC}$,
即$\frac{1.6}{a} = \frac{2.1 - x}{2 + b}$,
整理得:$3.2 + 1.6b = 2.1a - ax$, ①
由$\triangle FBA \backsim \triangle EOA$得$\frac{FB}{EO} = \frac{AB}{OA}$,
即$\frac{1.6}{a} = \frac{2 - x}{b}$,
整理得:$1.6b = 2a - ax$, ②
将②代入①,得$3.2 + 2a - ax = 2.1a - ax$,
$\therefore a = 32$,
即$OE = 32$,
答:楼的高度$OE$为 32 米.
解:
令$OE = a$,$AO = b$,$CB = x$,
则由$\triangle GDC \backsim \triangle EOC$得$\frac{GD}{EO} = \frac{CD}{OC}$,
即$\frac{1.6}{a} = \frac{2.1 - x}{2 + b}$,
整理得:$3.2 + 1.6b = 2.1a - ax$, ①
由$\triangle FBA \backsim \triangle EOA$得$\frac{FB}{EO} = \frac{AB}{OA}$,
即$\frac{1.6}{a} = \frac{2 - x}{b}$,
整理得:$1.6b = 2a - ax$, ②
将②代入①,得$3.2 + 2a - ax = 2.1a - ax$,
$\therefore a = 32$,
即$OE = 32$,
答:楼的高度$OE$为 32 米.
19.(12分)(2023·温州)如图所示,已知矩形$ABCD$,点$E在CB$延长线上,点$F在BC$延长线上,过点$F作FH\perp EF交ED的延长线于点H$,连接$AF交EH于点G$,$GE= GH$.
(1)求证:$BE= CF$;
证明:$\because FH \perp EF$,$GE = GH$,
$\therefore$
$\therefore$
$\because$ 四边形$ABCD$是矩形,
$\therefore$
$\therefore$
$\therefore$
$\therefore$
(2)当$\frac{AB}{FH}= \frac{5}{6}$,$AD= 4$时,求$EF$的长.
解:$\because$
$\therefore$
$\therefore$
$\because$
$\therefore$
设$BE = CF = x$,
$\because$
$\therefore$
$\because$
解得
$\therefore$

(1)求证:$BE= CF$;
证明:$\because FH \perp EF$,$GE = GH$,
$\therefore$
$GE = GF = GH$
.$\therefore$
$\angle GFE = \angle E$
.$\because$ 四边形$ABCD$是矩形,
$\therefore$
$AB = CD$,$\angle ABC = \angle DCB = 90^{\circ}$
.$\therefore$
$\triangle ABF \cong \triangle DCE(AAS)$
.$\therefore$
$BF = CE$
.$\therefore$
$BF - BC = CE - BC$,即$BE = CF$
;(2)当$\frac{AB}{FH}= \frac{5}{6}$,$AD= 4$时,求$EF$的长.
解:$\because$
$CD // FH$
,$\therefore$
$\triangle DCE \backsim \triangle HFE$
.$\therefore$
$\frac{EC}{EF} = \frac{CD}{FH}$
.$\because$
$CD = AB$
,$\therefore$
$\frac{CD}{FH} = \frac{AB}{FH} = \frac{5}{6}$
.设$BE = CF = x$,
$\because$
$BC = AD = 4$
,$\therefore$
$CE = x + 4$,$EF = 2x + 4$
.$\because$
$\frac{x + 4}{2x + 4} = \frac{5}{6}$
.解得
$x = 1$
,$\therefore$
$EF = 6$
.
答案:
解:
(1)$\because FH \perp EF$,$GE = GH$,
$\therefore GE = GF = GH$.
$\therefore \angle GFE = \angle E$.
$\because$ 四边形$ABCD$是矩形,
$\therefore AB = CD$,$\angle ABC = \angle DCB = 90^{\circ}$.
$\therefore \triangle ABF \cong \triangle DCE(AAS)$.
$\therefore BF = CE$.
$\therefore BF - BC = CE - BC$,即$BE = CF$;
(2)$\because CD // FH$,
$\therefore \triangle DCE \backsim \triangle HFE$.
$\therefore \frac{EC}{EF} = \frac{CD}{FH}$.
$\because CD = AB$,
$\therefore \frac{CD}{FH} = \frac{AB}{FH} = \frac{5}{6}$.
设$BE = CF = x$,
$\because BC = AD = 4$,
$\therefore CE = x + 4$,$EF = 2x + 4$.
$\because \frac{x + 4}{2x + 4} = \frac{5}{6}$.
解得$x = 1$,
$\therefore EF = 6$.
(1)$\because FH \perp EF$,$GE = GH$,
$\therefore GE = GF = GH$.
$\therefore \angle GFE = \angle E$.
$\because$ 四边形$ABCD$是矩形,
$\therefore AB = CD$,$\angle ABC = \angle DCB = 90^{\circ}$.
$\therefore \triangle ABF \cong \triangle DCE(AAS)$.
$\therefore BF = CE$.
$\therefore BF - BC = CE - BC$,即$BE = CF$;
(2)$\because CD // FH$,
$\therefore \triangle DCE \backsim \triangle HFE$.
$\therefore \frac{EC}{EF} = \frac{CD}{FH}$.
$\because CD = AB$,
$\therefore \frac{CD}{FH} = \frac{AB}{FH} = \frac{5}{6}$.
设$BE = CF = x$,
$\because BC = AD = 4$,
$\therefore CE = x + 4$,$EF = 2x + 4$.
$\because \frac{x + 4}{2x + 4} = \frac{5}{6}$.
解得$x = 1$,
$\therefore EF = 6$.
20.(14分)已知:如图1所示,$AB\perp BD$,$CD\perp BD$,垂足分别为$B$,$D$,$AD和BC相交于点E$,$EF\perp BD$,垂足为$F$,我们可以证明$\frac{1}{AB}+\frac{1}{CD}= \frac{1}{EF}$成立(不要求考生证明).


若将图中的垂线改为斜交,如图2所示,$AB// CD$,$AD$,$BC相交于点E$,过点$E作EF// AB交BD于点F$,则:
(1)$\frac{1}{AB}+\frac{1}{CD}= \frac{1}{EF}$还成立吗?如果成立,请给出证明;如果不成立,请说明理由;
(2)请找出$S_{\triangle ABD}$,$S_{\triangle BED}和S_{\triangle BDC}$间的关系式,并给出证明.
若将图中的垂线改为斜交,如图2所示,$AB// CD$,$AD$,$BC相交于点E$,过点$E作EF// AB交BD于点F$,则:
(1)$\frac{1}{AB}+\frac{1}{CD}= \frac{1}{EF}$还成立吗?如果成立,请给出证明;如果不成立,请说明理由;
(2)请找出$S_{\triangle ABD}$,$S_{\triangle BED}和S_{\triangle BDC}$间的关系式,并给出证明.
答案:
(1)成立.
证明:$\because AB // EF$,
$\therefore \frac{EF}{AB} = \frac{DF}{DB}$.
$\because CD // EF$,
$\therefore \frac{EF}{CD} = \frac{BF}{DB}$.
$\therefore \frac{EF}{AB} + \frac{EF}{CD} = \frac{DF}{DB} + \frac{BF}{DB} = \frac{DB}{DB} = 1$.
$\therefore \frac{1}{AB} + \frac{1}{CD} = \frac{1}{EF}$;
(2)关系式为:$\frac{1}{S_{\triangle ABD}} + \frac{1}{S_{\triangle BDC}} = \frac{1}{S_{\triangle BED}}$.
证明如下:分别过$A$作$AM \perp BD$于点$M$,过点$E$作$EN \perp BD$于点$N$,过点$C$作$CK \perp BD$交$BD$的延长线于点$K$,
由题设可得:$\frac{1}{AM} + \frac{1}{CK} = \frac{1}{EN}$,
$\therefore \frac{2}{BD \cdot AM} + \frac{2}{BD \cdot CK} = \frac{2}{BD \cdot EN}$.
即$\frac{1}{\frac{1}{2} \cdot BD \cdot AM} + \frac{1}{\frac{1}{2} \cdot BD \cdot CK} = \frac{1}{\frac{1}{2} \cdot BD \cdot EN}$
又$\because \frac{1}{2} \cdot BD \cdot AM = S_{\triangle ABD}$,$\frac{1}{2} \cdot BD \cdot CK = S_{\triangle BDC}$,$\frac{1}{2} \cdot BD \cdot EN = S_{\triangle BED}$,
$\therefore \frac{1}{S_{\triangle ABD}} + \frac{1}{S_{\triangle BDC}} = \frac{1}{S_{\triangle BED}}$.
(1)成立.
证明:$\because AB // EF$,
$\therefore \frac{EF}{AB} = \frac{DF}{DB}$.
$\because CD // EF$,
$\therefore \frac{EF}{CD} = \frac{BF}{DB}$.
$\therefore \frac{EF}{AB} + \frac{EF}{CD} = \frac{DF}{DB} + \frac{BF}{DB} = \frac{DB}{DB} = 1$.
$\therefore \frac{1}{AB} + \frac{1}{CD} = \frac{1}{EF}$;
(2)关系式为:$\frac{1}{S_{\triangle ABD}} + \frac{1}{S_{\triangle BDC}} = \frac{1}{S_{\triangle BED}}$.
证明如下:分别过$A$作$AM \perp BD$于点$M$,过点$E$作$EN \perp BD$于点$N$,过点$C$作$CK \perp BD$交$BD$的延长线于点$K$,
由题设可得:$\frac{1}{AM} + \frac{1}{CK} = \frac{1}{EN}$,
$\therefore \frac{2}{BD \cdot AM} + \frac{2}{BD \cdot CK} = \frac{2}{BD \cdot EN}$.
即$\frac{1}{\frac{1}{2} \cdot BD \cdot AM} + \frac{1}{\frac{1}{2} \cdot BD \cdot CK} = \frac{1}{\frac{1}{2} \cdot BD \cdot EN}$
又$\because \frac{1}{2} \cdot BD \cdot AM = S_{\triangle ABD}$,$\frac{1}{2} \cdot BD \cdot CK = S_{\triangle BDC}$,$\frac{1}{2} \cdot BD \cdot EN = S_{\triangle BED}$,
$\therefore \frac{1}{S_{\triangle ABD}} + \frac{1}{S_{\triangle BDC}} = \frac{1}{S_{\triangle BED}}$.
查看更多完整答案,请扫码查看