2025年畅行课堂九年级数学下册人教版山西专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年畅行课堂九年级数学下册人教版山西专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年畅行课堂九年级数学下册人教版山西专版》

13. (7分)计算:tan45°sin²60° - 4sin30°cos45° + $\sqrt{6}$tan30°.
答案: 解:原式=1×$(\frac{\sqrt{3}}{2})^{2}$ - 4×$\frac{1}{2}$×$\frac{\sqrt{2}}{2}$ + $\sqrt{6}$×$\frac{\sqrt{3}}{3}$=$\frac{3}{4}$ - $\sqrt{2}$ + $\sqrt{2}$=$\frac{3}{4}$
14. (10分)在Rt△ABC中,∠C为直角,∠A,∠B,∠C所对应的边长分别为a,b,c,根据下列条件解直角三角形:
(1)已知c = 20,∠A = 60°;
(2)已知a = $\sqrt{15}$,b = $\sqrt{5}$.
答案: 解:
(1)
∵∠A = 60°,∠C为直角,
∴∠B = 90° - 60° = 30°.
∵c = 20,∠B = 30°,
∴b = $\frac{c}{2}$ = 10,a = $\sqrt{20^{2} - 10^{2}}$ = 10$\sqrt{3}$
(2)
∵∠C为直角,a = $\sqrt{15}$,b = $\sqrt{5}$,
∴c = $\sqrt{a^{2} + b^{2}}$ = $\sqrt{15 + 5}$ = 2$\sqrt{5}$
∴sinB = $\frac{b}{c}$ = $\frac{\sqrt{5}}{2\sqrt{5}}$ = $\frac{1}{2}$
∴∠B = 30°.
∴∠A = 90° - 30° = 60°.
15. (11分)如图,在△ABC中,∠C = 90°,点D在BC上,BD = 4,AD = BC,cos∠ADC = $\frac{3}{5}$.
(1)求CD的长;
(2)求tanB的值.
             BD
答案: 解:
(1)在Rt△ACD中,cos∠ADC = $\frac{CD}{AD}$ = $\frac{3}{5}$.
∴设CD = 3x,AD = BC = 5x,根据勾股定理,得AC = $\sqrt{AD^{2} - CD^{2}}$ = 4x.
∵BD = 4,
∴5x - 3x = 4,解得x = 2.
∴CD = 3x = 6.
(2)在Rt△ABC中,AC = 4x = 8,BC = 5x = 10,
∴tanB = $\frac{AC}{BC}$ = $\frac{8}{10}$ = $\frac{4}{5}$.
16. (12分)如图,AB为⊙O的直径,C,F为⊙O上两点,且点C为$\overset{\frown}{BF}$的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为3,tanD = $\frac{3}{4}$,求AE的长.
            CE
答案:

(1)证明:如图,连接OC.AFCE
∵点C为$\overset{\frown}{BF}$的中点,
∴$\overset{\frown}{BC}$ = $\overset{\frown}{CF}$.
∴∠BAC = ∠FAC.
∵OA = OC,
∴∠OCA = ∠BAC.
∴∠OCA = ∠FAC.
∴OC//AE.
∵AE⊥DE,
∴OC⊥DE.又
∵OC是⊙O的半径,
∴DE是⊙O的切线.
(2)解:在Rt△OCD中,
∵tanD = $\frac{OC}{CD}$ = $\frac{3}{4}$,OC = 3,
∴CD = 4.
∴OD = $\sqrt{OC^{2} + CD^{2}}$ = 5.
∴AD = OD + AO = 8.在Rt△ADE中,
∵sinD = $\frac{AE}{AD}$ = $\frac{OC}{OD}$ = $\frac{3}{5}$,
∴AE = $\frac{24}{5}$.

查看更多完整答案,请扫码查看

关闭