2025年畅行课堂九年级数学下册人教版山西专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年畅行课堂九年级数学下册人教版山西专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年畅行课堂九年级数学下册人教版山西专版》

9. 如图,在□ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F.若△DEF的面积为9,则△DAF的面积为______.
第9题图    
答案: 12
10. 如图,在边长为1的正方形网格中,点A,B,C,D,E均为格点,则∠ADB + ∠AEB=______.第10题图
答案: 45°
11. 如图,在△ABC中,AD是中线,点E在AD上,且CE=CD=1,∠BAD=∠ACE,则AC的长为______.
           
答案: $\sqrt{2}$
三、解答题(共45分)
12. (14分)如图,△ABC的顶点坐标分别为A(1,3),B(4,2),C(2,1).
(1)以原点为位似中心,在原点的另一侧画出△A₁B₁C₁,使$\frac{AB}{A₁B₁}=\frac{1}{2}$;
(2)写出△A₁B₁C₁各顶点的坐标.
   
答案:
解:
(1)如图所示,$\triangle A_{1}B_{1}C_{1}$即为所求.
(2)$A_{1}(-2,-6)$,$B_{1}(-8,-4)$,$C_{1}(-4,-2)$.
13. (15分)如图,在△ABC和△ADE中,∠BAC=∠DAE = 90°,∠B = ∠ADE = 30°,AC与DE相交于点F,连接CE,点D在边BC上.
(1)求证:△ABD∽△ACE;
(2)若$\frac{AD}{BD}=\sqrt{3}$,求$\frac{DF}{CF}$的值.
     
答案:
(1)证明:$\because\angle BAC=\angle DAE$,$\angle B=\angle ADE$,$\therefore\triangle BAC\sim\triangle DAE$.$\therefore\frac{BA}{DA}=\frac{AC}{AE}$,即$\frac{BA}{AC}=\frac{DA}{AE}$.$\because\angle BAC=\angle DAE$,$\therefore\angle BAD=\angle CAE$.$\therefore\triangle ABD\sim\triangle ACE$.
(2)解:$\because\triangle ABD\sim\triangle ACE$,$\therefore\frac{AD}{AE}=\frac{BD}{CE}$,$\angle B=\angle ACE=\angle ADE$.$\therefore\frac{AD}{BD}=\frac{AE}{EC}=\sqrt{3}$.$\because\angle DAE = 90^{\circ}$,$\angle ADE = 30^{\circ}$,$\therefore\frac{AD}{AE}=\sqrt{3}$.$\therefore\frac{AD}{EC}=\frac{AD}{AE}\cdot\frac{AE}{EC}=\sqrt{3}\times\sqrt{3}=3$.$\because\angle ADE=\angle ACE$,$\angle AFD=\angle EFC$$\therefore\triangle ADF\sim\triangle ECF$,$\therefore\frac{DF}{CF}=\frac{AD}{EC}=3$.
14. (16分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC²=CE·CA.
(1)求证:BC=CD;
(2)分别延长AB,DC相交于点P,若PB=OB,CD=2$\sqrt{2}$,求⊙O的半径.
            BP
答案:

(1)证明:$\because DC^{2}=CE\cdot CA$,$\therefore\frac{DC}{CE}=\frac{CA}{DC}$.又$\because\angle ACD=\angle DCE$,$\therefore\triangle CAD\sim\triangle CDE$.$\therefore\angle CAD=\angle CDE$.$\because\angle CAD=\angle CBD$,$\therefore\angle CDB=\angle CBD$.$\therefore BC = DC$.
(2)解:如图,连接$OC$,设$\odot O$的半径为$r$, $\because CD = CB$,$\therefore\overset{\frown}{CD}=\overset{\frown}{CB}$.$\therefore\angle DAC=\angle BAC$.$\therefore\angle BOC=\angle BAD$.$\therefore OC// AD$.又$\because PB = OB$,$\therefore\frac{PC}{CD}=\frac{PO}{OA}=\frac{2r}{r}=2$.$\therefore PC = 2CD = 4\sqrt{2}$.$\because\angle PCB=\angle PAD$,$\angle CPB=\angle APD$$\therefore\triangle PCB\sim\triangle PAD$.$\therefore\frac{PC}{PA}=\frac{PB}{PD}$,即$\frac{4\sqrt{2}}{3r}=\frac{r}{6\sqrt{2}}$,解得$r = 4$(负值舍去).$\therefore\odot O$的半径为4.

查看更多完整答案,请扫码查看

关闭