科目:,来源:,题型:

28.(湖北卷)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组。在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%。登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%。为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本。试确定

(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例;

(Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数。

本小题主要考查分层抽样的概念和运算,以及运用统计知识解决实际问题的能力。

解:(Ⅰ)设登山组人数为,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有,解得b=50%,c=10%.

故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、

50%、10%。

(Ⅱ)游泳组中,抽取的青年人数为(人);抽取的中年人数为

50%=75(人);抽取的老年人数为10%=15(人)。

点击展开完整题目
试题详情
科目:,来源:,题型:

27.(湖北卷)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)、试问此次参赛学生总数约为多少人?

(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可共查阅的(部分)标准正态分布表


0
1
2
3
4
5
6
7
8
9
1.2
1.3
1.4
1.9
2.0
2.1
0.8849
0.9032
0.9192
0.9713
0.9772
0.9821
0.8869
0.9049
0.9207
0.9719
0.9778
0.9826
0.888
0.9066
0.9222
0.9726
0.9783
0.9830
0.8907
0.9082
0.9236
0.9732
0.9788
0.9834
0.8925
0.9099
0.9251
0.9738
0.9793
0.9838
0.8944
0.9115
0.9265
0.9744
0.9798
0.9842
0.8962
0.9131
0.9278
0.9750
0.9803
0.9846
0.8980
0.9147
0.9292
0.9756
0.9808
0.9850
0.8997
0.9162
0.9306
0.9762
0.9812
0.9854
0.9015
0.9177
0.9319
0.9767
0.9817
0.9857

点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。

解:(Ⅰ)设参赛学生的分数为,因为-N(70,100),由条件知,

P(≥90)=1-P(<90)=1-F(90)=1-=1-(2)=1-0.9772=0.228.

这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此,

参赛总人数约为≈526(人)。

(Ⅱ)假定设奖的分数线为x分,则P(x)=1-P(<x)=1-F(90)=1-=0.0951,即=0.9049,查表得≈1.31,解得x=83.1.

故设奖得分数线约为83.1分。

点击展开完整题目
试题详情
科目:,来源:,题型:

26.(广东卷)某运动员射击一次所得环数的分布如下:


6
7
8
9
10

0




现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为.

 (I)求该运动员两次都命中7环的概率

(II)求的分布列

解:(Ⅰ)求该运动员两次都命中7环的概率为

(Ⅱ) 的可能取值为7、8、9、10

   

分布列为


7
8
9
10
P
0.04
0.21
0.39
0.36

(Ⅲ) 的数学希望为.

点击展开完整题目
试题详情
科目:,来源:,题型:

25.(福建卷)每次抛掷一枚骰子(六个面上分别标以数字

(I)连续抛掷2次,求向上的数不同的概率;

(II)连续抛掷2次,求向上的数之和为6的概率;

(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。

本小题主要考查概率的基本知识,运用数学知识解决实际问题的能力。满分12分。

解:(I)设A表示事件“抛掷2次,向上的数不同”,则

答:抛掷2次,向上的数不同的概率为

(II)设B表示事件“抛掷2次,向上的数之和为6”。

向上的数之和为6的结果有 5种,

答:抛掷2次,向上的数之和为6的概率为

点击展开完整题目
试题详情
科目:,来源:,题型:

24.(北京卷)某公司招聘员工,指定三门考试课程,有两种考试方案.

方案一:考试三门课程,至少有两门及格为考试通过;

方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

假设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.求:

(Ⅰ)该应聘者用方案一考试通过的概率;

(Ⅱ)该应聘者用方案二考试通过的概率.

解:记该应聘者对三门指定课程考试及格的事件分别为AB,C

P(A)=0.5,P(B)=0.6,P(C)=0.9.

(Ⅰ) 应聘者用方案一考试通过的概率

  p1=P(A·B·)+P(·B·C)+P(A··C)+P(A·B·C)

   =0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9

=0.03+0.27+0.18+0.27=0.75.

(Ⅱ) 应聘者用方案二考试通过的概率

  p2=P(A·B)+P(B·C)+ P(A·C)

   =×(0.5×0.6+0.6×0.9+0.5×0.9)=×1.29=0.43

点击展开完整题目
试题详情
科目:,来源:,题型:

23.(北京卷)某公司招聘员工,指定三门考试课程,有两种考试方案.

   方案一:考试三门课程,至少有两门及格为考试通过;

   方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

   假设某应聘者对三门指定课程考试及格的概率分别是,且三门课程考试是否及格相互之间没有影响.

   (Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;

   (Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)

解:设三门考试课程考试通过的事件分别为A,B,C,相应的概率为a,b,c

(1)考试三门课程,至少有两门及格的事件可表示为AB+AC+BC+ABC,设其概率为P1,则P1=ab(1-c)+a(1-b)c+(1-a)bc+abc=ab+ac+bc-2abc

设在三门课程中,随机选取两门,这两门都及格的概率为P2,则P2ab+ac+bc

(2)P1-P2=(ab+ac+bc-2abc)-(ab+ac+bc)=ab+ac+bc-2abc

(ab+ac+bc-3abc)=(ab(1-c)+ac(1-b)+bc(1-a))>0

\P1>P2即用方案一的概率大于用方案二的概率.

点击展开完整题目
试题详情
科目:,来源:,题型:

22.(安徽卷)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。

(Ⅰ)求所选用的两种不同的添加剂的芳香度之和等于4的概率;

(Ⅱ)求所选用的两种不同的添加剂的芳香度之和不小于3的概率;

解:设“所选用的两种不同的添加剂的芳香度之和等于4”的事件为A,“所选用的两种不同的添加剂的芳香度之和不小于3”的事件为B

(Ⅰ)芳香度之和等于4的取法有2种:,故

(Ⅱ)芳香度之和等于1的取法有1种:;芳香度之和等于2的取法有1种:,故

点击展开完整题目
试题详情
科目:,来源:,题型:

21.(安徽卷)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。用表示所选用的两种不同的添加剂的芳香度之和。

(Ⅰ)写出的分布列;(以列表的形式给出结论,不必写计算过程)

(Ⅱ)求的数学期望。(要求写出计算过程或说明道理)

解:(Ⅰ)


1
2
3
4
5
6
7
8
9
P









(Ⅱ)

点击展开完整题目
试题详情
科目:,来源:,题型:

20.(上海春)同学们都知道,在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低;反之,如果按顺序去掉一些低分,那么班级的平均分将提高. 这两个事实可以用数学语言描述为:若有限数列 满足,则         

                             (结论用数学式子表示).

解:如果在有限数列 中,按顺序去掉一些高分 ,那么有不等关系 ; 如果在有限数列 中,按顺序去掉一些低分 ,那么有不等关系 .从而应填 ,与 . 三、解答题(共27题)

点击展开完整题目
试题详情
科目:,来源:,题型:

19.(四川卷)设离散型随机变量可能取的值为1,2,3,4。(1,2,3,4)。又的数学期望,则     ;

解:设离散性随机变量可能取的值为,所以

,即,又的数学期望,则,即,∴ .

点击展开完整题目
试题详情
关闭