9. 若$|x| = 4$,$y^{2} = 4$且$y < 0$,则$x + y =$

2或-6
.
答案:
9.2或-6
10. 对于每个正整数$n$,设$f(n)$表示$n(n + 1)$的末位数字.例如:$f(1) = 2(1×2$的末位数字),$f(2) = 6(2×3$的末位数字),$f(3) = 2(3×4$的末位数字),则$f(1) + f(2) + f(3) + \cdots + f(2024)$的值为
4050
.
答案:
10.4050
11. (本题8分)计算:
(1)$\frac{1}{2}(a^{2} - b) + \frac{1}{3}(a - b^{2}) + \frac{1}{6}(a^{2} + b^{2})$;
(2)$2x - [2(x + 3y) - 3(x - 2y)]$.
(1)$\frac{1}{2}(a^{2} - b) + \frac{1}{3}(a - b^{2}) + \frac{1}{6}(a^{2} + b^{2})$;
(2)$2x - [2(x + 3y) - 3(x - 2y)]$.
答案:
$11.(1)\frac{2}{3}a^{2}-\frac{1}{6}b^{2}-\frac{1}{2}b + \frac{1}{3}a (2)3x - 12y$
12. (本题8分)已知多项式$(2x^{2} + ax - y + 6) - (2bx^{2} + 5y - 1)$.
(1) 若多项式的值与字母$x$的取值无关,求$a$,$b$的值;
(2) 在(1)的条件下,先化简多项式$3(a^{2} - ab + b^{2}) - (\frac{1}{2}a^{2} + ab + 4b^{2})$,再求它的值.
(1) 若多项式的值与字母$x$的取值无关,求$a$,$b$的值;
(2) 在(1)的条件下,先化简多项式$3(a^{2} - ab + b^{2}) - (\frac{1}{2}a^{2} + ab + 4b^{2})$,再求它的值.
答案:
12.
(1)原式$=2x^{2}+ax - y + 6 - 2b - 5y + 1=(2 - 2b)x^{2}+ax - 6y + 7,$由题意得,b = 1,a = 0
(2)原式$=\frac{5}{2}a^{2}-4ab - b^{2},$当b = 1,a = 0时,原式=-1
(1)原式$=2x^{2}+ax - y + 6 - 2b - 5y + 1=(2 - 2b)x^{2}+ax - 6y + 7,$由题意得,b = 1,a = 0
(2)原式$=\frac{5}{2}a^{2}-4ab - b^{2},$当b = 1,a = 0时,原式=-1
13. (本题8分)已知$A = 2a^{2} - 3ab + b^{2}$,$B = - a^{2} + 4ab - 2b^{2}$.求:
(1)$A + B$;
(2)$A - 3B$.
(1)$A + B$;
(2)$A - 3B$.
答案:
$13.(1)A + B=a^{2}+ab - b^{2} (2)A - 3B=5a^{2}-15ab + 7b^{2}$
查看更多完整答案,请扫码查看