第15页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
典例4 小马和小李设计了如图甲、乙所示两种滑轮组来提升同一重物,在讨论滑轮组机械效率时两人产生了分歧,小马认为:“装置甲的动滑轮个数少,机械效率高”,小李认为:“装置乙更省力,机械效率高”。两人谁也说服不了谁,于是进行实验来验证自己的猜想是否正确。实验中得到的数据如下表所示。(所用每个滑轮的重力相同,绳重和摩擦忽略不计)
|实验装置|甲|乙|
|----|----|----|
|钩码重力G/N|4|4|
|钩码上升高度h/m|0.1|0.1|
|绳端拉力F/N|1.6|1.4|
|绳端移动距离s/m|0.3|0.4|
|机械效率η(结果精确到0.1%)|______|71.4%|
(1)根据实验数据,请计算一个动滑轮的重力是______N,装置甲的机械效率是______,由计算结果可以确定______的说法是正确的。
(2)随后小马又设计了一个方案,如图丙所示,你认为和装置甲对比,在提升同一重物时,装置丙的机械效率______(填“大于”“等于”或“小于”)装置甲的机械效率。
|实验装置|甲|乙|
|----|----|----|
|钩码重力G/N|4|4|
|钩码上升高度h/m|0.1|0.1|
|绳端拉力F/N|1.6|1.4|
|绳端移动距离s/m|0.3|0.4|
|机械效率η(结果精确到0.1%)|______|71.4%|
(1)根据实验数据,请计算一个动滑轮的重力是______N,装置甲的机械效率是______,由计算结果可以确定______的说法是正确的。
(2)随后小马又设计了一个方案,如图丙所示,你认为和装置甲对比,在提升同一重物时,装置丙的机械效率______(填“大于”“等于”或“小于”)装置甲的机械效率。
答案:
(1)0.8 83.3% 小马 (2)等于
解析:(1)装置甲:有用功$W_{有用}=Gh=4\,N × 0.1\,m=0.4\,J$;
总功$W_{总}=Fs=1.6\,N × 0.3\,m=0.48\,J$;
额外功$W_{额外}=W_{总}-W_{有用}=0.48\,J-0.4\,J=0.08\,J$;
由$W_{额外}=G_{动}h$得,$G_{动}=\frac{W_{额外}}{h}=\frac{0.08\,J}{0.1\,m}=0.8\,N$;
机械效率$\eta=\frac{W_{有用}}{W_{总}} × 100\%=\frac{0.4\,J}{0.48\,J} × 100\% \approx 83.3\%$;
装置甲效率83.3%高于装置乙71.4%,故小马的说法正确。
(2)装置甲和丙承担物重的绳子段数、动滑轮个数、钩码重力均相同,有用功和额外功相同,由$\eta=\frac{W_{有用}}{W_{总}}$知,机械效率相等。
解析:(1)装置甲:有用功$W_{有用}=Gh=4\,N × 0.1\,m=0.4\,J$;
总功$W_{总}=Fs=1.6\,N × 0.3\,m=0.48\,J$;
额外功$W_{额外}=W_{总}-W_{有用}=0.48\,J-0.4\,J=0.08\,J$;
由$W_{额外}=G_{动}h$得,$G_{动}=\frac{W_{额外}}{h}=\frac{0.08\,J}{0.1\,m}=0.8\,N$;
机械效率$\eta=\frac{W_{有用}}{W_{总}} × 100\%=\frac{0.4\,J}{0.48\,J} × 100\% \approx 83.3\%$;
装置甲效率83.3%高于装置乙71.4%,故小马的说法正确。
(2)装置甲和丙承担物重的绳子段数、动滑轮个数、钩码重力均相同,有用功和额外功相同,由$\eta=\frac{W_{有用}}{W_{总}}$知,机械效率相等。
变式训练 小明利用斜面搬运物体的过程中,提出了一个问题:“斜面的机械效率与斜面的倾斜程度有没有关系?”针对这个问题,他通过在斜面上用弹簧测力计拉动物体进行了探究(如图所示),测得的实验数据如下表所示。
|实验序号|1|2|3|
|----|----|----|----|
|斜面的倾斜程度|较缓|较陡|最陡|
|物体重力G/N|5.0|5.0|5.0|
|物体上升高度h/m|0.10|0.15|0.25|
|沿斜面拉力F/N|1.6|2.2|3.1|
|物体移动距离s/m|0.50|0.50|0.50|
|有用功$W_{有用}$/J|0.50|0.75|______|
|总功$W_{总}$/J|0.80|1.10|1.55|
|机械效率η(结果精确到1%)|63%|68%|______|
(1)沿斜面拉动物体时,应使其做______运动。
(2)根据表中的数据可求出第3次实验中所做的有用功为______J,机械效率是______。
(3)通过上述实验数据可知,斜面的省力情况与斜面倾斜程度的关系:斜面倾斜程度越______,越费力。
(4)通过上述实验数据,对斜面机械效率的问题可获得初步的结论:在其他条件不变的情况下,______。
|实验序号|1|2|3|
|----|----|----|----|
|斜面的倾斜程度|较缓|较陡|最陡|
|物体重力G/N|5.0|5.0|5.0|
|物体上升高度h/m|0.10|0.15|0.25|
|沿斜面拉力F/N|1.6|2.2|3.1|
|物体移动距离s/m|0.50|0.50|0.50|
|有用功$W_{有用}$/J|0.50|0.75|______|
|总功$W_{总}$/J|0.80|1.10|1.55|
|机械效率η(结果精确到1%)|63%|68%|______|
(1)沿斜面拉动物体时,应使其做______运动。
(2)根据表中的数据可求出第3次实验中所做的有用功为______J,机械效率是______。
(3)通过上述实验数据可知,斜面的省力情况与斜面倾斜程度的关系:斜面倾斜程度越______,越费力。
(4)通过上述实验数据,对斜面机械效率的问题可获得初步的结论:在其他条件不变的情况下,______。
答案:
(1)匀速直线 (2)1.25 81% (3)陡 (4)斜面倾斜程度越陡,机械效率越高
解析:(2)第3次有用功$W_{有用}=Gh=5.0\,N × 0.25\,m=1.25\,J$;
机械效率$\eta=\frac{W_{有用}}{W_{总}} × 100\%=\frac{1.25\,J}{1.55\,J} × 100\% \approx 81\%$。
解析:(2)第3次有用功$W_{有用}=Gh=5.0\,N × 0.25\,m=1.25\,J$;
机械效率$\eta=\frac{W_{有用}}{W_{总}} × 100\%=\frac{1.25\,J}{1.55\,J} × 100\% \approx 81\%$。
查看更多完整答案,请扫码查看