2. 把下列各式分解因式:
(1)$a^{5}-a$;
(2)$2x^{3}y - 4x^{2}y^{2}+2xy^{3}$;
(3)$(m + 1)(m - 4)+3m$;
(4)$-2(m - n)^{2}+32$.
(1)$a^{5}-a$;
(2)$2x^{3}y - 4x^{2}y^{2}+2xy^{3}$;
(3)$(m + 1)(m - 4)+3m$;
(4)$-2(m - n)^{2}+32$.
答案:
(1)$a(a - 1)(a + 1)(a^2 + 1)$;
(2)$2xy(x - y)^2$;
(3)$(m + 2)(m - 2)$;
(4)$-2(m - n + 4)(m - n - 4)$
(1)$a(a - 1)(a + 1)(a^2 + 1)$;
(2)$2xy(x - y)^2$;
(3)$(m + 2)(m - 2)$;
(4)$-2(m - n + 4)(m - n - 4)$
3. 先化简,再求值:$[(2a + b)^{2}+(2a + b)(b - 2a)-6b]÷ 2b$,其中$a = -\frac{1}{2}$,$b = 3$.
答案:
$2a + b - 3,-1$
查看更多完整答案,请扫码查看