1. 下列代数式中哪些是单项式?哪些是多项式?
$ \frac{xy}{3}, -\frac{3}{4}xy^{2}z, a, x - y, \frac{1}{x}, 3.14, -m, -m^{2} + 2m - 1 $.
$ \frac{xy}{3}, -\frac{3}{4}xy^{2}z, a, x - y, \frac{1}{x}, 3.14, -m, -m^{2} + 2m - 1 $.
答案:
1. $\frac{xy}{3},-\frac{3}{4}xy^2z,a,3.14,-m$是单项式;$x-y,-m^2+2m-1$是多项式
2. 去括号,合并同类项:
(1)$ (x - 2y) - (y - 3x) $;
(2)$ 3a^{2} - \left[5a - \left(\frac{1}{2}a - 3\right) + 2a^{2}\right] + 4 $.
(1)$ (x - 2y) - (y - 3x) $;
(2)$ 3a^{2} - \left[5a - \left(\frac{1}{2}a - 3\right) + 2a^{2}\right] + 4 $.
答案:
$(1)$ 解:
$\begin{aligned}&(x - 2y) - (y - 3x)\\=&x - 2y - y + 3x\\=&(x + 3x)+(-2y - y)\\=&4x - 3y\end{aligned}$
$(2)$ 解:
$\begin{aligned}&3a^{2}-\left[5a-\left(\frac{1}{2}a - 3\right)+2a^{2}\right]+4\\=&3a^{2}-\left(5a-\frac{1}{2}a + 3+2a^{2}\right)+4\\=&3a^{2}-5a+\frac{1}{2}a - 3 - 2a^{2}+4\\=&(3a^{2}-2a^{2})+\left(-5a+\frac{1}{2}a\right)+(-3 + 4)\\=&a^{2}-\frac{9}{2}a + 1\end{aligned}$
综上,答案依次为$(1)$$\boldsymbol{4x - 3y}$;$(2)$$\boldsymbol{a^{2}-\frac{9}{2}a + 1}$。
$\begin{aligned}&(x - 2y) - (y - 3x)\\=&x - 2y - y + 3x\\=&(x + 3x)+(-2y - y)\\=&4x - 3y\end{aligned}$
$(2)$ 解:
$\begin{aligned}&3a^{2}-\left[5a-\left(\frac{1}{2}a - 3\right)+2a^{2}\right]+4\\=&3a^{2}-\left(5a-\frac{1}{2}a + 3+2a^{2}\right)+4\\=&3a^{2}-5a+\frac{1}{2}a - 3 - 2a^{2}+4\\=&(3a^{2}-2a^{2})+\left(-5a+\frac{1}{2}a\right)+(-3 + 4)\\=&a^{2}-\frac{9}{2}a + 1\end{aligned}$
综上,答案依次为$(1)$$\boldsymbol{4x - 3y}$;$(2)$$\boldsymbol{a^{2}-\frac{9}{2}a + 1}$。
3. 先化简,再求值:
(1)$ (2x^{2} - 5xy + 2y^{2}) - (x^{2} + xy + 2y^{2}) $,其中$ x = -1 $,$ y = 2 $;
(2)$ -m - [- (2m - 3n)] + [- (-3m) - 4n] $,其中$ m = \frac{1}{2} $,$ n = \frac{1}{7} $.
(1)$ (2x^{2} - 5xy + 2y^{2}) - (x^{2} + xy + 2y^{2}) $,其中$ x = -1 $,$ y = 2 $;
(2)$ -m - [- (2m - 3n)] + [- (-3m) - 4n] $,其中$ m = \frac{1}{2} $,$ n = \frac{1}{7} $.
答案:
3.
(1)原式=x²-6xy. 当x=-1,y=2时,原式=(-1)²-6×(-1)×2=13
(2)原式=4m-7n. 当$m=\frac{1}{2}$,$n=\frac{1}{7}$时,原式=4×$\frac{1}{2}$-7×$\frac{1}{7}$=1
(1)原式=x²-6xy. 当x=-1,y=2时,原式=(-1)²-6×(-1)×2=13
(2)原式=4m-7n. 当$m=\frac{1}{2}$,$n=\frac{1}{7}$时,原式=4×$\frac{1}{2}$-7×$\frac{1}{7}$=1
查看更多完整答案,请扫码查看