2025年暑假大串联八年级数学人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假大串联八年级数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年暑假大串联八年级数学人教版》

1. 写出一个分式,使它满足:①含有字母 $ a $,$ b $;②分子是一个单项式;③分母是一个多项式,你写的这个分式是
$\frac{a}{b+3}$
(只要求写一个)。
答案: 答案不唯一,如:$ \frac{a}{b+3} $
2. 若等式 $ \frac { A } { x ^ { 2 } - 1 } = \frac { x + 1 } { x - 1 } ( x \neq - 1 ) $ 成立,则 $ A = $
$ x^{2}+2x+1 $
,若 $ \frac { a - b } { a b ^ { 2 } } = \frac { B } { a ^ { 2 } b ^ { 3 } } $,则 $ B = $
$ a^{2}b - ab^{2} $
答案: $ x^{2}+2x+1 $ $ a^{2}b - ab^{2} $
3. 观察下列一组分式:$ \frac { b } { a } $,$ - \frac { 2 b } { a ^ { 2 } } $,$ \frac { 3 b } { a ^ { 3 } } $,$ - \frac { 4 b } { a ^ { 4 } } $,$ \frac { 5 b } { a ^ { 5 } } $,$ \cdots $,则第 $ 10 $ 个分式为
$ -\frac{10b}{a^{10}} $
,第 $ n $ 个分式为
$ (-1)^{n+1} \cdot \frac{nb}{a^{n}} $
答案: $ -\frac{10b}{a^{10}} $ $ (-1)^{n+1} \cdot \frac{nb}{a^{n}} $
4. 已知分式方程 $ \frac { 1 } { x - 2 } + 3 = \frac { k - 2 } { 2 - x } $ 有增根,则 $ k = $
1
答案: 1
5. 一只蚂蚁的质量约为 $ 0.00053905 $ 千克,横线上的数用科学记数法表示为
$ 5.3905×10^{-4} $
答案: $ 5.3905×10^{-4} $
6. 已知 $ a + \frac { 1 } { a } = 4 $,那么 $ a ^ { 2 } + \frac { 1 } { a ^ { 2 } } $ 的值为
14
答案: 14
7. 已知 $ a b = 1 $,则 $ \left( \frac { 1 } { a + 1 } + \frac { 1 } { b + 1 } \right) ^ { 2014 } = $
1
答案: 1
8. 如果方程 $ \frac { 2 } { x - 3 } = \frac { 1 - x } { 3 - x } - 5 $ 有增根,那么增根为
$ x = 3 $
答案: $ x = 3 $
9. (随州中考题)已知 $ a b = - 1 $,$ a + b = 2 $,则式子 $ \frac { b } { a } + \frac { a } { b } = $
-6
答案: -6
10. 若某工厂原计划 $ a $ 天生产 $ b $ 件产品,若现在需要提前 $ x $ 天完成,则现在比原来每天要多生产产品
$\frac{bx}{a(a - x)}$
件。
答案: $ \frac{bx}{a(a - x)} $
11. 在下列式子:① $ \frac { x } { 3 } $;② $ \frac { 2 y ^ { 2 } } { y } $;③ $ \frac { 5 } { \pi } $;④ $ \frac { x ^ { 2 } } { x - 2 } $ 中,是分式的有(
B

A. $ 1 $ 个
B. $ 2 $ 个
C. $ 3 $ 个
D. $ 4 $ 个
答案: B
12. 分式方程 $ \frac { 1 } { x } = \frac { 2 } { x + 1 } $ 的解为(
C

A. $ x = 3 $
B. $ x = 2 $
C. $ x = 1 $
D. $ x = - 1 $
答案: C
13. 下列各式与 $ \frac { a + b } { a - b } $ 相等的是(
C

A. $ \frac { 3 a + b } { 3 a - b } $
B. $ \frac { a ^ { 2 } + b ^ { 2 } } { a ^ { 2 } - b ^ { 2 } } $
C. $ \frac { ( a + b ) ^ { 2 } } { a ^ { 2 } - b ^ { 2 } } ( a \neq - b ) $
D. $ \frac { a + b - 2 } { a - b - 2 } $
答案: C
14. 已知 $ x = - 2 $ 时,分式 $ \frac { x - b } { 2 x + a } $ 无意义,$ x = 4 $ 时,分式的值为零,则 $ a + b $ 的值是(
D

A. $ 0 $
B. $ 2 $
C. $ 4 $
D. $ 8 $
答案: D
15. 已知:$ 1 - \frac { 4 } { x } + \frac { 4 } { x ^ { 2 } } = 0 $,则 $ \frac { 1 } { x } $ 等于(
C

A. $ 2 $
B. $ 1 $
C. $ \frac { 1 } { 2 } $
D. $ \pm \frac { 1 } { 2 } $
答案: C
16. (深圳中考题)某单位向一所希望小学赠送 $ 1080 $ 件文具,现用 $ A $,$ B $ 两种不同的包装箱进行包装,已知每个 $ B $ 型包装箱比 $ A $ 型包装箱多装 $ 15 $ 件文具,单独使用 $ B $ 型包装箱比单独使用 $ A $ 型包装箱可少用 $ 12 $ 个。设 $ B $ 型包装箱每个可以装 $ x $ 件文具,根据题意列方程为(
B

A. $ \frac { 1080 } { x } = \frac { 1080 } { x - 15 } + 12 $
B. $ \frac { 1080 } { x } = \frac { 1080 } { x - 15 } - 12 $
C. $ \frac { 1080 } { x } = \frac { 1080 } { x + 15 } - 12 $
D. $ \frac { 1080 } { x } = \frac { 1080 } { x + 15 } + 12 $
答案: B

查看更多完整答案,请扫码查看

关闭