1. 在 Rt△ABC 中,∠C=90°,AC=24,AB=25,计算:$\tan A · \tan B - 1$.
答案:
1.解:在Rt△ABC中,由勾股定理,得BC=7,
∴tanA = $\frac{BC}{AC}$ = $\frac{7}{24}$,tanB = $\frac{AC}{BC}$ = $\frac{24}{7}$,
∴原式 = $\frac{7}{24}$×$\frac{24}{7}$−1 = 0.
∴tanA = $\frac{BC}{AC}$ = $\frac{7}{24}$,tanB = $\frac{AC}{BC}$ = $\frac{24}{7}$,
∴原式 = $\frac{7}{24}$×$\frac{24}{7}$−1 = 0.
2. 在 Rt△ABC 中,∠C=90°,BC=3,$\tan A = 0.6$,求 AC 和 AB 的长.
答案:
2.解:在Rt△ABC中,
∵tanA = $\frac{BC}{AC}$ = 0.6,BC = 3,
∴AC = 5,
∴AB = $\sqrt{5^{2}+3^{2}}$ = $\sqrt{34}$
∵tanA = $\frac{BC}{AC}$ = 0.6,BC = 3,
∴AC = 5,
∴AB = $\sqrt{5^{2}+3^{2}}$ = $\sqrt{34}$
3. 如图,在 △ABC 中,AB=BC=15,$\tan \angle ABC = \frac{3}{4}$,求边 AC 的长.

答案:
3.解:如答图,过点A作AE⊥BC,垂足为E;
∵在Rt△ABE中,tan∠ABC = $\frac{AE}{BE}$ = $\frac{3}{4}$,AB = 15,
∴设AE = 3x,BE = 4x,则AB = 5x = 15,
∴x = 3,
∴AE = 9,BE = 12,
∴CE = BC−BE = 15−12 = 3.
在Rt△AEC中,根据勾股定理,得AC = $\sqrt{AE^{2}+CE^{2}}$ = $\sqrt{9^{2}+3^{2}}$ = 3$\sqrt{10}$
3.解:如答图,过点A作AE⊥BC,垂足为E;
∵在Rt△ABE中,tan∠ABC = $\frac{AE}{BE}$ = $\frac{3}{4}$,AB = 15,
∴设AE = 3x,BE = 4x,则AB = 5x = 15,
∴x = 3,
∴AE = 9,BE = 12,
∴CE = BC−BE = 15−12 = 3.
在Rt△AEC中,根据勾股定理,得AC = $\sqrt{AE^{2}+CE^{2}}$ = $\sqrt{9^{2}+3^{2}}$ = 3$\sqrt{10}$
4. 在如图所示的正方形网格中,每个小四边形都是相同的正方形,A,B,C,D 四点都在格点处,AB 与 CD 相交于点 O,求 $\tan \angle BOD$ 的值.

答案:
4.解:如答图,将AB向上平移1格到A'B',设A'B'与CD 交于点O',标注图中格点E,连接EB'.
∵AB//A'B',
∴∠BOD = ∠B'O'D.
设小正方形的边长是1,则O'B' = 2$\sqrt{5}$,B'E = 3$\sqrt{2}$,O'E = $\sqrt{2}$,
∴O'E² + B'E² = O'B'²,
∴△EOB'是直角三角形,且∠O'EB' = 90°,
∴tan∠BOD = tan∠B'O'D = $\frac{B'E}{O'E}$ = $\frac{3\sqrt{2}}{\sqrt{2}}$ = 3.
4.解:如答图,将AB向上平移1格到A'B',设A'B'与CD 交于点O',标注图中格点E,连接EB'.
∵AB//A'B',
∴∠BOD = ∠B'O'D.
设小正方形的边长是1,则O'B' = 2$\sqrt{5}$,B'E = 3$\sqrt{2}$,O'E = $\sqrt{2}$,
∴O'E² + B'E² = O'B'²,
∴△EOB'是直角三角形,且∠O'EB' = 90°,
∴tan∠BOD = tan∠B'O'D = $\frac{B'E}{O'E}$ = $\frac{3\sqrt{2}}{\sqrt{2}}$ = 3.
查看更多完整答案,请扫码查看