1.先用配方法将下列二次函数转化成$y = a(x - h)^{2} + k$的形式,再写出函数图像的顶点坐标、对称轴以及描述该函数的增减性.
(1)$y = x^{2} - 4x + 3$;
(2)$y = -x^{2} + 6x - 5$;
(3)$y = -2x^{2} + 4x - 3$;
(4)$y = -2x^{2} + 3x - 1$;
(5)$y = \frac{1}{2}x^{2} - 2x + 4$;
(6)$y = -\frac{1}{3}x^{2} - x + \frac{1}{4}$.
(1)$y = x^{2} - 4x + 3$;
(2)$y = -x^{2} + 6x - 5$;
(3)$y = -2x^{2} + 4x - 3$;
(4)$y = -2x^{2} + 3x - 1$;
(5)$y = \frac{1}{2}x^{2} - 2x + 4$;
(6)$y = -\frac{1}{3}x^{2} - x + \frac{1}{4}$.
答案:
1.解:
(1)$y = x^{2} - 4x + 3 = x^{2} - 4x + 2^{2} - 2^{2} + 3 = (x - 2)^{2} - 1$,
$\therefore$顶点坐标为$(2, - 1)$,对称轴为直线$x = 2$,当$x > 2$时, $y$随$x$的增大而增大,当$x < 2$时,$y$随$x$的增大而减小.
(2)$y = - x^{2} + 6x - 5 = - (x^{2} - 6x) - 5 = - (x^{2} - 6x + 9 - 9) - 5 = - (x - 3)^{2} + 4$,
$\therefore$顶点坐标为$(3,4)$,对称轴为直线$x = 3$,当$x > 3$时,$y$随$x$的增大而减小,当$x < 3$时,$y$随$x$的增大而增大.
(3)$y = - 2x^{2} + 4x - 3 = - 2(x^{2} - 2x) - 3 = - 2(x^{2} - 2x + 1 - 1) - 3 = - 2(x - 1)^{2} - 1$.
$\therefore$顶点坐标是$(1, - 1)$,对称轴为直线$x = 1$,当$x > 1$时,$y$随$x$的增大而减小,当$x < 1$时,$y$随$x$的增大而增大.
(4)$y = - 2x^{2} + 3x - 1 = - 2(x^{2} - \frac{3}{2}x) - 1 = - 2(x^{2} - \frac{3}{2}x + \frac{9}{16} - \frac{9}{16}) - 1 = - 2(x - \frac{3}{4})^{2} + \frac{1}{8}$,
$\therefore$顶点坐标是$(\frac{3}{4},\frac{1}{8})$,对称轴为直线$x = \frac{3}{4}$,当$x > \frac{3}{4}$时,$y$随$x$的增大而减小,当$x < \frac{3}{4}$时,$y$随$x$的增大而增大.
(5)$y=\frac{1}{2}x^{2}-2x + 4=\frac{1}{2}(x^{2}-4x)+4=\frac{1}{2}[(x - 2)^{2}-4]+4=\frac{1}{2}(x - 2)^{2}+2$.
$\therefore$顶点坐标为$(2,2)$,对称轴为直线$x = 2$,当$x < 2$时,$y$随$x$的增大而减小,当$x > 2$时,$y$随$x$的增大而增大.
(6)$y = - \frac{1}{3}x^{2} - x + \frac{1}{4} = - \frac{1}{3}(x^{2} + 3x) + \frac{1}{4} = - \frac{1}{3}(x^{2} + 3x + \frac{9}{4} - \frac{9}{4}) + \frac{1}{4} = - \frac{1}{3}(x + \frac{3}{2})^{2} + \frac{3}{4} + \frac{1}{4} = - \frac{1}{3}(x + \frac{3}{2})^{2} + 1$.
$\therefore$顶点坐标是$(- \frac{3}{2},1)$,对称轴为直线$x = - \frac{3}{2}$,当$x < - \frac{3}{2}$时,$y$随$x$的增大而增大,当$x > - \frac{3}{2}$时,$y$随$x$的增大而减小.
(1)$y = x^{2} - 4x + 3 = x^{2} - 4x + 2^{2} - 2^{2} + 3 = (x - 2)^{2} - 1$,
$\therefore$顶点坐标为$(2, - 1)$,对称轴为直线$x = 2$,当$x > 2$时, $y$随$x$的增大而增大,当$x < 2$时,$y$随$x$的增大而减小.
(2)$y = - x^{2} + 6x - 5 = - (x^{2} - 6x) - 5 = - (x^{2} - 6x + 9 - 9) - 5 = - (x - 3)^{2} + 4$,
$\therefore$顶点坐标为$(3,4)$,对称轴为直线$x = 3$,当$x > 3$时,$y$随$x$的增大而减小,当$x < 3$时,$y$随$x$的增大而增大.
(3)$y = - 2x^{2} + 4x - 3 = - 2(x^{2} - 2x) - 3 = - 2(x^{2} - 2x + 1 - 1) - 3 = - 2(x - 1)^{2} - 1$.
$\therefore$顶点坐标是$(1, - 1)$,对称轴为直线$x = 1$,当$x > 1$时,$y$随$x$的增大而减小,当$x < 1$时,$y$随$x$的增大而增大.
(4)$y = - 2x^{2} + 3x - 1 = - 2(x^{2} - \frac{3}{2}x) - 1 = - 2(x^{2} - \frac{3}{2}x + \frac{9}{16} - \frac{9}{16}) - 1 = - 2(x - \frac{3}{4})^{2} + \frac{1}{8}$,
$\therefore$顶点坐标是$(\frac{3}{4},\frac{1}{8})$,对称轴为直线$x = \frac{3}{4}$,当$x > \frac{3}{4}$时,$y$随$x$的增大而减小,当$x < \frac{3}{4}$时,$y$随$x$的增大而增大.
(5)$y=\frac{1}{2}x^{2}-2x + 4=\frac{1}{2}(x^{2}-4x)+4=\frac{1}{2}[(x - 2)^{2}-4]+4=\frac{1}{2}(x - 2)^{2}+2$.
$\therefore$顶点坐标为$(2,2)$,对称轴为直线$x = 2$,当$x < 2$时,$y$随$x$的增大而减小,当$x > 2$时,$y$随$x$的增大而增大.
(6)$y = - \frac{1}{3}x^{2} - x + \frac{1}{4} = - \frac{1}{3}(x^{2} + 3x) + \frac{1}{4} = - \frac{1}{3}(x^{2} + 3x + \frac{9}{4} - \frac{9}{4}) + \frac{1}{4} = - \frac{1}{3}(x + \frac{3}{2})^{2} + \frac{3}{4} + \frac{1}{4} = - \frac{1}{3}(x + \frac{3}{2})^{2} + 1$.
$\therefore$顶点坐标是$(- \frac{3}{2},1)$,对称轴为直线$x = - \frac{3}{2}$,当$x < - \frac{3}{2}$时,$y$随$x$的增大而增大,当$x > - \frac{3}{2}$时,$y$随$x$的增大而减小.
2.已知二次函数$y = x^{2} - 2x - 3$.
(1)在如图所示的平面直角坐标系中,画出这个二次函数的图像;
(2)当$x$取何值时,$y$随$x$的增大而减小?
(3)当$x$取何值时,$y = 0$?当$x$取何值时,$y < 0$?当$x$取何值时,$y > 0$?
(4)当$-2 < x < 3$时,观察图像直接写出函数$y$的取值范围.

(1)在如图所示的平面直角坐标系中,画出这个二次函数的图像;
(2)当$x$取何值时,$y$随$x$的增大而减小?
(3)当$x$取何值时,$y = 0$?当$x$取何值时,$y < 0$?当$x$取何值时,$y > 0$?
(4)当$-2 < x < 3$时,观察图像直接写出函数$y$的取值范围.
答案:
2.解:
(1)函数图像如答图所示.
(2)二次函数$y = x^{2} - 2x - 3$的图像开口向上,对称轴为直线$x = 1$,$\therefore$当$x < 1$时,$y$随$x$的增大而减小.
(3)令$x^{2} - 2x - 3 = 0$,解得$x_{1} = 3$,$x_{2} = - 1$,
$\therefore$二次函数的图像与$x$轴的交点坐标为$(3,0)$,$(- 1,0)$,
$\therefore$当$x = - 1$或$x = 3$时,$y = 0$;当$- 1 < x < 3$时,$y < 0$;当$x < - 1$或$x > 3$时,$y > 0$.
(4)观察图像可得,当$- 2 < x < 3$时,函数$y$的取值范围是$- 4 \leq y < 5$.
2.解:
(1)函数图像如答图所示.
(2)二次函数$y = x^{2} - 2x - 3$的图像开口向上,对称轴为直线$x = 1$,$\therefore$当$x < 1$时,$y$随$x$的增大而减小.
(3)令$x^{2} - 2x - 3 = 0$,解得$x_{1} = 3$,$x_{2} = - 1$,
$\therefore$二次函数的图像与$x$轴的交点坐标为$(3,0)$,$(- 1,0)$,
$\therefore$当$x = - 1$或$x = 3$时,$y = 0$;当$- 1 < x < 3$时,$y < 0$;当$x < - 1$或$x > 3$时,$y > 0$.
(4)观察图像可得,当$- 2 < x < 3$时,函数$y$的取值范围是$- 4 \leq y < 5$.
查看更多完整答案,请扫码查看