$r= 2\ cm$
$C= $
$S= $
$d= 20\ cm$
$C= $
$S= $
$d= 8\ dm$
$C= $
$S= $
$C= 20\pi\ cm$
$d= $
$S= $
$S= 2500\pi\ m^2$
$r= $
$d= $
$C= $
$C= $
$4\pi\mathrm{cm}$(或$12.56\mathrm{cm}$)
$S= $
$4\pi\mathrm{cm}^{2}$(或$12.56\mathrm{cm}^{2}$)
$d= 20\ cm$
$C= $
$20\pi\mathrm{cm}$(或$62.8\mathrm{cm}$)
$S= $
$100\pi\mathrm{cm}^{2}$(或$314\mathrm{cm}^{2}$)
$d= 8\ dm$
$C= $
$8\pi\mathrm{dm}$(或$25.12\mathrm{dm}$)
$S= $
$16\pi\mathrm{dm}^{2}$(或$50.24\mathrm{dm}^{2}$)
$C= 20\pi\ cm$
$d= $
$20\mathrm{cm}$
$S= $
$100\pi\mathrm{cm}^{2}$(或$314\mathrm{cm}^{2}$)
$S= 2500\pi\ m^2$
$r= $
$50\mathrm{m}$
$d= $
$100\mathrm{m}$
$C= $
$100\pi\mathrm{m}$(或$314\mathrm{m}$)
答案:
1. 当$r = 2\mathrm{cm}$时:
圆的周长公式$C = 2\pi r$,$C=2\pi×2 = 4\pi\mathrm{cm}\approx4×3.14 = 12.56\mathrm{cm}$;
圆的面积公式$S=\pi r^{2}$,$S=\pi×2^{2}=4\pi\mathrm{cm}^{2}\approx4×3.14 = 12.56\mathrm{cm}^{2}$。
2. 当$d = 20\mathrm{cm}$时:
因为$r=\frac{d}{2}$,$r = 10\mathrm{cm}$,$C=\pi d$,$C = 20\pi\mathrm{cm}\approx20×3.14 = 62.8\mathrm{cm}$;
$S=\pi r^{2}=\pi×(\frac{d}{2})^{2}$,$S=\pi×10^{2}=100\pi\mathrm{cm}^{2}\approx100×3.14 = 314\mathrm{cm}^{2}$。
3. 当$d = 8\mathrm{dm}$时:
$r=\frac{d}{2}=4\mathrm{dm}$,$C=\pi d$,$C = 8\pi\mathrm{dm}\approx8×3.14 = 25.12\mathrm{dm}$;
$S=\pi r^{2}=\pi×4^{2}=16\pi\mathrm{dm}^{2}\approx16×3.14 = 50.24\mathrm{dm}^{2}$。
4. 当$C = 20\pi\mathrm{cm}$时:
由$C=\pi d$,得$d=\frac{C}{\pi}$,$d = 20\mathrm{cm}$;
$r=\frac{d}{2}=10\mathrm{cm}$,$S=\pi r^{2}$,$S=\pi×10^{2}=100\pi\mathrm{cm}^{2}\approx100×3.14 = 314\mathrm{cm}^{2}$。
5. 当$S = 2500\pi\mathrm{m}^{2}$时:
由$S=\pi r^{2}$,得$r^{2}=\frac{S}{\pi}$,$r^{2}=2500$,$r = 50\mathrm{m}$;
$d = 2r$,$d = 100\mathrm{m}$;
$C=\pi d$,$C = 100\pi\mathrm{m}\approx100×3.14 = 314\mathrm{m}$。
故答案依次为:$4\pi\mathrm{cm}$(或$12.56\mathrm{cm}$);$4\pi\mathrm{cm}^{2}$(或$12.56\mathrm{cm}^{2}$);$20\pi\mathrm{cm}$(或$62.8\mathrm{cm}$);$100\pi\mathrm{cm}^{2}$(或$314\mathrm{cm}^{2}$);$8\pi\mathrm{dm}$(或$25.12\mathrm{dm}$);$16\pi\mathrm{dm}^{2}$(或$50.24\mathrm{dm}^{2}$);$20\mathrm{cm}$;$100\pi\mathrm{cm}^{2}$(或$314\mathrm{cm}^{2}$);$50\mathrm{m}$;$100\mathrm{m}$;$100\pi\mathrm{m}$(或$314\mathrm{m}$)。
圆的周长公式$C = 2\pi r$,$C=2\pi×2 = 4\pi\mathrm{cm}\approx4×3.14 = 12.56\mathrm{cm}$;
圆的面积公式$S=\pi r^{2}$,$S=\pi×2^{2}=4\pi\mathrm{cm}^{2}\approx4×3.14 = 12.56\mathrm{cm}^{2}$。
2. 当$d = 20\mathrm{cm}$时:
因为$r=\frac{d}{2}$,$r = 10\mathrm{cm}$,$C=\pi d$,$C = 20\pi\mathrm{cm}\approx20×3.14 = 62.8\mathrm{cm}$;
$S=\pi r^{2}=\pi×(\frac{d}{2})^{2}$,$S=\pi×10^{2}=100\pi\mathrm{cm}^{2}\approx100×3.14 = 314\mathrm{cm}^{2}$。
3. 当$d = 8\mathrm{dm}$时:
$r=\frac{d}{2}=4\mathrm{dm}$,$C=\pi d$,$C = 8\pi\mathrm{dm}\approx8×3.14 = 25.12\mathrm{dm}$;
$S=\pi r^{2}=\pi×4^{2}=16\pi\mathrm{dm}^{2}\approx16×3.14 = 50.24\mathrm{dm}^{2}$。
4. 当$C = 20\pi\mathrm{cm}$时:
由$C=\pi d$,得$d=\frac{C}{\pi}$,$d = 20\mathrm{cm}$;
$r=\frac{d}{2}=10\mathrm{cm}$,$S=\pi r^{2}$,$S=\pi×10^{2}=100\pi\mathrm{cm}^{2}\approx100×3.14 = 314\mathrm{cm}^{2}$。
5. 当$S = 2500\pi\mathrm{m}^{2}$时:
由$S=\pi r^{2}$,得$r^{2}=\frac{S}{\pi}$,$r^{2}=2500$,$r = 50\mathrm{m}$;
$d = 2r$,$d = 100\mathrm{m}$;
$C=\pi d$,$C = 100\pi\mathrm{m}\approx100×3.14 = 314\mathrm{m}$。
故答案依次为:$4\pi\mathrm{cm}$(或$12.56\mathrm{cm}$);$4\pi\mathrm{cm}^{2}$(或$12.56\mathrm{cm}^{2}$);$20\pi\mathrm{cm}$(或$62.8\mathrm{cm}$);$100\pi\mathrm{cm}^{2}$(或$314\mathrm{cm}^{2}$);$8\pi\mathrm{dm}$(或$25.12\mathrm{dm}$);$16\pi\mathrm{dm}^{2}$(或$50.24\mathrm{dm}^{2}$);$20\mathrm{cm}$;$100\pi\mathrm{cm}^{2}$(或$314\mathrm{cm}^{2}$);$50\mathrm{m}$;$100\mathrm{m}$;$100\pi\mathrm{m}$(或$314\mathrm{m}$)。
$1.2\ m= $
$4.3\ m= $
$31.4\ dm= $
$10.2\ m= $
$12.56\ dm= $
$1.73\ m= $
$25.12\ cm= $
$1.8\ dm= $
$7.5\ cm= $
$53.3\ cm^2= $
$0.286\ m^2= $
$400\ mm^2= $
$210\ m^2= $
$9.83\ dm^3= $
$250\ cm^3= $
$0.263\ m^2= $
$450\ cm^2= $
$2.35\ t= $
$6\ kg\ 80\ g= $
$5600\ cm^3= $
120
$cm$$4.3\ m= $
43
$dm$$31.4\ dm= $
3.14
$m$$10.2\ m= $
102
$dm$$12.56\ dm= $
1.256
$m$$1.73\ m= $
173
$cm$$25.12\ cm= $
0.2512
$m$$1.8\ dm= $
18
$cm$$7.5\ cm= $
75
$mm$$53.3\ cm^2= $
0.533
$dm^2$$0.286\ m^2= $
28.6
$dm^2$$400\ mm^2= $
4
$cm^2$$210\ m^2= $
21000
$dm^2$$9.83\ dm^3= $
9830
$cm^3$$250\ cm^3= $
0.25
$dm^3$$0.263\ m^2= $
2630
$cm^2$$450\ cm^2= $
4.5
$dm^2$$2.35\ t= $
2350
$kg$$6\ kg\ 80\ g= $
6080
$g$$5600\ cm^3= $
5.6
$dm^3$
答案:
解析:本题考查的是单位换算的知识点,需要知道各种单位之间的换算关系,并正确应用这些关系进行计算。
答案:
$1.2m = 120cm$;
$4.3m = 43dm$;
$31.4dm = 3.14m$;
$10.2m = 102dm$;
$12.56dm = 1.256m$;
$1.73m = 173cm$;
$25.12cm = 0.2512m$;
$1.8dm = 18cm$;
$7.5cm = 75mm$;
$53.3cm^2 = 0.533dm^2$;
$0.286m^2 = 28.6dm^2$;
$400mm^2 = 4cm^2$;
$210m^2 = 21000dm^2$;
$9.83dm^3 = 9830cm^3$;
$250cm^3 = 0.25dm^3$;
$0.263m^2 = 2630cm^2$;
$450cm^2 = 4.5dm^2$;
$2.35t = 2350kg$;
$6kg 80g = 6080g$;
$5600cm^3 = 5.6dm^3$。
答案:
$1.2m = 120cm$;
$4.3m = 43dm$;
$31.4dm = 3.14m$;
$10.2m = 102dm$;
$12.56dm = 1.256m$;
$1.73m = 173cm$;
$25.12cm = 0.2512m$;
$1.8dm = 18cm$;
$7.5cm = 75mm$;
$53.3cm^2 = 0.533dm^2$;
$0.286m^2 = 28.6dm^2$;
$400mm^2 = 4cm^2$;
$210m^2 = 21000dm^2$;
$9.83dm^3 = 9830cm^3$;
$250cm^3 = 0.25dm^3$;
$0.263m^2 = 2630cm^2$;
$450cm^2 = 4.5dm^2$;
$2.35t = 2350kg$;
$6kg 80g = 6080g$;
$5600cm^3 = 5.6dm^3$。
查看更多完整答案,请扫码查看