【题目】已知标准方程下的椭圆
的焦点在
轴上,且经过点
,它的一个焦点恰好与抛物线
的焦点重合.椭圆
的上顶点为
,过点
的直线交椭圆于
两点,连接
、
,记直线
的斜率分别为
.
(1)求椭圆
的标准方程;
(2)求
的值.
参考答案:
【答案】(1)
;(2) 见解析;(3)
.
【解析】试题分析:(1)由抛物线的焦点为
,得到椭圆的两个焦点坐标为
,再根据椭圆的定义得到
,即可求得椭圆
的标准方程;
(2)由题意,设直线
的方程为
,并代入椭圆方程,求得
,化简运算,即可求得
的值.
试题解析:
(1)设椭圆
的标准方程为
,抛物线的焦点为
,所以该椭圆的两个焦点坐标为
,根据椭圆的定义有
,所以椭圆
的标准方程为
;
(2)由条件知
,直线
的斜率存在.设直线
的方程为
,并代入椭圆方程,得
,且
,设点
,由根与系数的韦达定理得,
则
,即为定值
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0 , 且x0>0,则实数a的取值范围是( )
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,﹣1)
D.(﹣∞,﹣2) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知
为抛物线
上一个动点,
为圆
上一个动点,那么点
到点
的距离与点
到抛物线的准线距离之和的最小值是( )A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
是平行四边形,
,
为
的中点,且有
,现以
为折痕,将
折起,使得点
到达点
的位置,且

(1)证明:
平面
;(2)若四棱锥
的体积为
,求四棱锥
的侧面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列{an}的前n项和为Sn , a1=1,an≠0,anan+1=λSn﹣1,其中λ为常数.
(1)证明:an+2﹣an=λ
(2)是否存在λ,使得{an}为等差数列?并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为
=0.85x-85.71,则下列结论中不正确的是A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(
,
)C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知某运动员每次投篮命中的概率低于
,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A.
B.
C.
D. 
相关试题