【题目】已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0 , 且x0>0,则实数a的取值范围是( )
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,﹣1)
D.(﹣∞,﹣2)
参考答案:
【答案】D
【解析】解:∵f(x)=ax3﹣3x2+1,
∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;
①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;
②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;
③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;
故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;
而当x=
时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;
故f(
)=
﹣3
+1>0;
故a<﹣2;
综上所述,
实数a的取值范围是(﹣∞,﹣2);
故选:D.
【考点精析】关于本题考查的函数的零点与方程根的关系,需要了解二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】不等式组
的解集记为D,有下列四个命题:
p1:(x,y)∈D,x+2y≥﹣2 p2:(x,y)∈D,x+2y≥2
p3:(x,y)∈D,x+2y≤3 p4:(x,y)∈D,x+2y≤﹣1
其中真命题是( )
A.p2 , p3
B.p1 , p4
C.p1 , p2
D.p1 , p3 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直三棱柱
中,
,
为棱
的中点,
.
(1)证明:
平面
;(2)设二面角
的正切值为
,
,
,求异面直线
与
所成角的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某厂生产某种产品的年固定成本为250万元,每生产
千件,需另投入成本
,当年产量不足80千件时,
(万元);当年产量不小于80千件时,
(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
为抛物线
上一个动点,
为圆
上一个动点,那么点
到点
的距离与点
到抛物线的准线距离之和的最小值是( )A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
是平行四边形,
,
为
的中点,且有
,现以
为折痕,将
折起,使得点
到达点
的位置,且

(1)证明:
平面
;(2)若四棱锥
的体积为
,求四棱锥
的侧面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知标准方程下的椭圆
的焦点在
轴上,且经过点
,它的一个焦点恰好与抛物线
的焦点重合.椭圆
的上顶点为
,过点
的直线交椭圆于
两点,连接
、
,记直线
的斜率分别为
.(1)求椭圆
的标准方程;(2)求
的值.
相关试题