【题目】设命题p:f(x)=
在区间(1,+∞)上是减函数;命题q;x1x2是方程x2﹣ax﹣2=0的两个实根,不等式m2+5m﹣3≥|x1﹣x2|对任意实数α∈[﹣1,1]恒成立;若¬p∧q为真,试求实数m的取值范围.
参考答案:
【答案】解:∵f(x)= ![]()
在区间(﹣∞,m),(m,+∞)上是减函数,而已知在区间(1,+∞)上是减函数,
∴m≤1,即命题p为真命题时m≤1,命题p为假命题时m>1,
∵x1 , x2是方程x2﹣ax﹣2=0的两个实根
∴ ![]()
∴|x1﹣x2|=
= ![]()
∴当a∈[﹣1,1]时,|x1﹣x2|max=3,
由不等式m2+5m﹣3≥|x1﹣x2|对任意实数a∈[﹣1,1]恒成立.
可得:m2+5m﹣3≥3,∴m≥1或m≤﹣6,
∴命题q为真命题时m≥1或m≤﹣6,
∵﹣p∧q为真,
∴命题p假q真,即
,
∴实数m的取值范围是m>1
【解析】先根据分式函数的单调性求出命题p为真时m的取值范围,然后根据题意求出|x1﹣x2|的最大值,再解不等式,若﹣p∧q为真则命题p假q真,从而可求出m的取值范围.
【考点精析】本题主要考查了复合命题的真假的相关知识点,需要掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=aln(2x+1)+bx+1.
(1)若函数y=f(x)在x=1处取得极值,且曲线y=f(x)在点(0,f(0))处的切线与直线2x+y﹣3=0平行,求a的值;
(2)若
,试讨论函数y=f(x)的单调性. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知任意角α的终边经过点P(﹣3,m),且cosα=﹣

(1)求m的值.
(2)求sinα与tanα的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(Ⅰ)当
时,求
的单调区间;(Ⅱ)设函数
在点
处的切线为
,直线
与
轴相交于点
.若点
的纵坐标恒小于1,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,其中常数
.(Ⅰ)讨论
在
上的单调性;(Ⅱ)当
时,若曲线
上总存在相异两点
,使曲线
在
两点处的切线互相平行,试求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
:
(
)的离心率为
,以原点
为圆心,椭圆
的长半轴长为半径的圆与直线
相切.(Ⅰ)求椭圆
的标准方程;(Ⅱ)已知点
为动直线
与椭圆
的两个交点,问:在
轴上是否存在定点
,使得
为定值?若存在,试求出点
的坐标和定值;若不存在,请说明理由.
相关试题