第66页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
1. 填一填。
(1) $\frac{1}{5}+\frac{2}{5}= (\quad)$。
想:$(\quad)个\frac{1}{5}加(\quad)个\frac{1}{5}是(\quad)个\frac{1}{5}$,就是$\frac{(\quad)}{(\quad)}$。
(2) $\frac{5}{9}-\frac{2}{9}= (\quad)$。
想:$(\quad)个\frac{1}{9}减去(\quad)个\frac{1}{9}$,剩下$(\quad)个\frac{1}{9}$,就是$\frac{(\quad)}{(\quad)}$。
(1) $\frac{1}{5}+\frac{2}{5}= (\quad)$。
想:$(\quad)个\frac{1}{5}加(\quad)个\frac{1}{5}是(\quad)个\frac{1}{5}$,就是$\frac{(\quad)}{(\quad)}$。
(2) $\frac{5}{9}-\frac{2}{9}= (\quad)$。
想:$(\quad)个\frac{1}{9}减去(\quad)个\frac{1}{9}$,剩下$(\quad)个\frac{1}{9}$,就是$\frac{(\quad)}{(\quad)}$。
答案:
1.
(1)$\frac{3}{5}$ 1 2 3 $\frac{3}{5}$
(2)$\frac{3}{9}$ 5 2 3 $\frac{3}{9}$
(1)$\frac{3}{5}$ 1 2 3 $\frac{3}{5}$
(2)$\frac{3}{9}$ 5 2 3 $\frac{3}{9}$
2. 算一算。
$\frac{2}{6}+\frac{3}{6}= $ $\frac{2}{7}+\frac{5}{7}= $ $\frac{5}{8}-\frac{3}{8}= $ $\frac{3}{10}+\frac{5}{10}= $
$\frac{3}{4}-\frac{1}{4}= $ $\frac{2}{5}+\frac{2}{5}= $ $\frac{5}{7}-\frac{3}{7}= $ $\frac{4}{9}+\frac{5}{9}= $
$\frac{2}{6}+\frac{3}{6}= $ $\frac{2}{7}+\frac{5}{7}= $ $\frac{5}{8}-\frac{3}{8}= $ $\frac{3}{10}+\frac{5}{10}= $
$\frac{3}{4}-\frac{1}{4}= $ $\frac{2}{5}+\frac{2}{5}= $ $\frac{5}{7}-\frac{3}{7}= $ $\frac{4}{9}+\frac{5}{9}= $
答案:
2.$\frac{5}{6}$ $\frac{7}{7}$(或1) $\frac{2}{8}$ $\frac{8}{10}$ $\frac{2}{4}$ $\frac{4}{5}$ $\frac{2}{7}$ $\frac{9}{9}$(或1)
3. 文文看一本书,第一天看了这本书的$\frac{2}{7}$,第二天看了这本书的$\frac{4}{7}$,她两天一共看了这本书的几分之几?第二天比第一天多看了这本书的几分之几?
答案:
3.$\frac{2}{7}+\frac{4}{7}=\frac{6}{7}$
$\frac{4}{7}-\frac{2}{7}=\frac{2}{7}$
解析:求她两天一共看了这本书的几分之几,用加法计算;求第二天比第一天多看了这本书的几分之几,用减法计算。
$\frac{4}{7}-\frac{2}{7}=\frac{2}{7}$
解析:求她两天一共看了这本书的几分之几,用加法计算;求第二天比第一天多看了这本书的几分之几,用减法计算。
4.
一个面包正好平均切成了8块。5个孩子和3位大人每人吃了一块。
(1) 每人吃了这个面包的$\frac{(\quad)}{(\quad)}$,也就是$\frac{(\quad)}{(\quad)}$个。
(2) 孩子们比大人们多吃了$\frac{(\quad)}{(\quad)}$个面包。
(1) 每人吃了这个面包的$\frac{(\quad)}{(\quad)}$,也就是$\frac{(\quad)}{(\quad)}$个。
(2) 孩子们比大人们多吃了$\frac{(\quad)}{(\quad)}$个面包。
答案:
4.
(1)$\frac{1}{8}$ $\frac{1}{8}$
(2)$\frac{2}{8}$
解析:5个孩子吃了这个面包的$\frac{5}{8}$,3位大人吃了这个面包的$\frac{3}{8}$,孩子们比大人们多吃了$\frac{5}{8}-\frac{3}{8}=\frac{2}{8}$(个)面包。
(1)$\frac{1}{8}$ $\frac{1}{8}$
(2)$\frac{2}{8}$
解析:5个孩子吃了这个面包的$\frac{5}{8}$,3位大人吃了这个面包的$\frac{3}{8}$,孩子们比大人们多吃了$\frac{5}{8}-\frac{3}{8}=\frac{2}{8}$(个)面包。
5. 在括号里填上合适的数。
$\frac{4}{6}+\frac{(\quad)}{6}= \frac{5}{6}$ $\frac{9}{10}-\frac{(\quad)}{10}-\frac{3}{10}= \frac{2}{10}$
$\frac{4}{6}+\frac{(\quad)}{6}= \frac{5}{6}$ $\frac{9}{10}-\frac{(\quad)}{10}-\frac{3}{10}= \frac{2}{10}$
答案:
5.1 4
解析:可以这样想:$\frac{4}{6}$表示4个$\frac{1}{6}$,$\frac{5}{6}$表示5个$\frac{1}{6}$,4个$\frac{1}{6}$加上1个$\frac{1}{6}$就是5个$\frac{1}{6}$;$\frac{9}{10}$表示9个$\frac{1}{10}$,$\frac{3}{10}$表示3个$\frac{1}{10}$,9个$\frac{1}{10}$先减去3个$\frac{1}{10}$得6个$\frac{1}{10}$,而结果是2个$\frac{1}{10}$,所以还要减去4个$\frac{1}{10}$。
解析:可以这样想:$\frac{4}{6}$表示4个$\frac{1}{6}$,$\frac{5}{6}$表示5个$\frac{1}{6}$,4个$\frac{1}{6}$加上1个$\frac{1}{6}$就是5个$\frac{1}{6}$;$\frac{9}{10}$表示9个$\frac{1}{10}$,$\frac{3}{10}$表示3个$\frac{1}{10}$,9个$\frac{1}{10}$先减去3个$\frac{1}{10}$得6个$\frac{1}{10}$,而结果是2个$\frac{1}{10}$,所以还要减去4个$\frac{1}{10}$。
查看更多完整答案,请扫码查看