1. 圆是轴对称图形,
过圆心的任意一条直线
都是它的对称轴.
答案:
1. 过圆心的任意一条直线
2. 垂径定理:垂直于弦的直径平分
弦
以及弦所对的两条弧
.
答案:
2. 弦 两条弧
1. 如图,$AB$是$\odot O$的弦,直径$MN\bot AB$,垂足为$C$,则下列结论不一定成立的是 (

A.$AC=BC$
B.$\overset{\frown}{AN}=\overset{\frown}{BN}$
C.$\overset{\frown}{AM}=\overset{\frown}{BM}$
D.$OC=CN$
D
)A.$AC=BC$
B.$\overset{\frown}{AN}=\overset{\frown}{BN}$
C.$\overset{\frown}{AM}=\overset{\frown}{BM}$
D.$OC=CN$
答案:
1.D
2. 已知$\odot O$的半径为$7$,$AB$是$\odot O$的弦,点$P$在弦$AB$上. 若$PA=4$,$PB=6$,则$OP$的长为
(
A.$\sqrt{14}$
B.$4$
C.$\sqrt{23}$
D.$5$
(
D
)A.$\sqrt{14}$
B.$4$
C.$\sqrt{23}$
D.$5$
答案:
2.D
3. (2024·长沙)如图,在$\odot O$中,弦$AB$的长为$8$,圆心$O$到$AB$的距离$OE=4$,则$\odot O$的半径为

$4\sqrt{2}$
.
答案:
$3.4\sqrt{2}$
4. (新情境·现实生活)(2023·永州)如图,$\odot O$是一个盛有水的容器的横截面,$\odot O$的半径为$10\ cm$,水的最深处到水面$AB$的距离为$4\ \text{cm$,则水面$AB$的宽度为

16
$ cm$.
答案:
4.16
5. (2024·遂宁改编)如图,$AB$是$\odot O$的直径,$AC$是$\odot O$的弦,$D$是$\overset{\frown}{AC}$的中点,$DE\bot AB$于点$E$,交$AC$于点$F$,交$\odot O$于点$H$,$DB$交$AC$于点$G$,连接$AD$.
(1)求证:$AF=DF$;
(2)若$AF=\frac{5}{2} $,$\frac{AE}{AD}=\frac{\sqrt{5}}{5} $,求$AE$的长.

(1)求证:$AF=DF$;
(2)若$AF=\frac{5}{2} $,$\frac{AE}{AD}=\frac{\sqrt{5}}{5} $,求$AE$的长.
答案:
5.(1)
∵ D 是$\overset{\frown}{AC}$的中点,
∴$\overset{\frown}{AD}=\overset{\frown}{CD}. $
∵AB⊥DH,且 AB是⊙O的直径,
∴$\overset{\frown}{AD}=\overset{\frown}{AH}, $
∴$\overset{\frown}{CD}=\overset{\frown}{AH}, $
∴∠ADH =∠CAD,
∴AF = DF (2)设$AE =\sqrt{5}x,$则AD = 5x.
∵DE⊥AB,
∴∠AED = 90°,
∴在Rt△AED中$,DE =\sqrt{AD^{2}-AE^{2}}= 2\sqrt{5}x. $
∵$AF =\frac{5}{2},AF = DF, $
∴$DF =\frac{5}{2}. $
∵在Rt△AEF中,
$AE^{2}+EF^{2}=AF^{2}, $
∴$(\sqrt{5}x)^{2}+(2\sqrt{5}x-\frac{5}{2})^{2}=(\frac{5}{2})^{2},$解得
$x =\frac{2\sqrt{5}}{5}(x = 0$舍去),
∴$AE =\sqrt{5}x = 2$
∵ D 是$\overset{\frown}{AC}$的中点,
∴$\overset{\frown}{AD}=\overset{\frown}{CD}. $
∵AB⊥DH,且 AB是⊙O的直径,
∴$\overset{\frown}{AD}=\overset{\frown}{AH}, $
∴$\overset{\frown}{CD}=\overset{\frown}{AH}, $
∴∠ADH =∠CAD,
∴AF = DF (2)设$AE =\sqrt{5}x,$则AD = 5x.
∵DE⊥AB,
∴∠AED = 90°,
∴在Rt△AED中$,DE =\sqrt{AD^{2}-AE^{2}}= 2\sqrt{5}x. $
∵$AF =\frac{5}{2},AF = DF, $
∴$DF =\frac{5}{2}. $
∵在Rt△AEF中,
$AE^{2}+EF^{2}=AF^{2}, $
∴$(\sqrt{5}x)^{2}+(2\sqrt{5}x-\frac{5}{2})^{2}=(\frac{5}{2})^{2},$解得
$x =\frac{2\sqrt{5}}{5}(x = 0$舍去),
∴$AE =\sqrt{5}x = 2$
查看更多完整答案,请扫码查看