【题目】如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是( )
![]()
A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF
参考答案:
【答案】A
【解析】分析:当AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;
详解:当AB=BC时,四边形DBFE是菱形;
理由:∵点D、E、F分别是边AB、AC、BC的中点,
∴DE∥BC,EF∥AB,
∴四边形DBFE是平行四边形,
∵DE=
BC,EF=
AB,
∴DE=EF,
∴四边形DBFE是菱形.
故B正确,不符合题意,
当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,
当EF=FC,可证EF=BF,可得四边形DBFE是菱形,
故C、D不符合题意,
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.

(1)求抛物线的解析式及点C的坐标;
(2)求证:△ABC是直角三角形;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是
的一张纸条,按图
图
图
,把这一纸条先沿
折叠并压平,再沿
折叠并压平,若图3中
,则图2中
的度数为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段引导市民节约用水。某市规定如下用水收费标准:每月每户的用水不超过6
时,水费按正常收费;超过6
时,超过的部分收较高水费。该市某户居民今年2月份的用水量为9
,缴纳水费为27元;3月份的用水量为11
,缴纳水费为37元。(1)求在限定量以内每吨多少元?超出部分的水费每吨多少元?
(2)若该市某居民今年4月份的用水量为13
. 则应缴纳水费多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数
图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点 A、与y轴交于点B,连接AB.(1)求证:P为线段AB的中点;
(2)求△AOB的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC中∠ACB=90°,E在AB上,以AE为直径的⊙O与BC相切于D,与AC相交于F,连接AD.
(1)求证:AD平分∠BAC;
(2)连接OC,如果∠B=30°,CF=1,求OC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=60°,AB=1,现将△ABC绕点A逆时针旋转至点B恰好落在BC上的B'处,其中点C运动路径为
,则图中阴影部分的面积是_____.
相关试题