【题目】如图,在⊙O中,
=
,∠AOB=40°,则∠ADC的度数是( ) ![]()
A.15°
B.20°
C.30°
D.40°
参考答案:
【答案】B
【解析】解:连接CO,如图: ![]()
∵在⊙O中,
=
,
∴∠AOC=∠AOB,
∵∠AOB=40°,
∴∠AOC=40°,
∴∠ADC=
∠AOC=20°,
故选B.
【考点精析】认真审题,首先需要了解圆心角、弧、弦的关系(在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半),还要掌握圆周角定理(顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,C,P是
上两点,AB=13,AC=5. 
(1)如图(1),若点P是
的中点,求PA的长;
(2)如图(2),若点P是
的中点,求PA的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,将边长为2的正方形OABC如图①放置,O为原点. (Ⅰ)若将正方形OABC绕点O逆时针旋转60°时,如图②,求点A的坐标;
(Ⅱ)如图③,若将图①中的正方形OABC绕点O逆时针旋转75°时,求点B的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.

(1)求抛物线的解析式;
(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如下一组数:
,请用你发现的规律,猜想第2018个数为____________. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在4×4的正方形方格网中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是( )

A.
B.
C.
D.2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+3|+(b+3a)2=0
(1)求点C表示的数:
(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动
(i)当P、Q两点在数轴上D点相遇时,求此时C、D两点之间的距离;
(ii),若AP+BQ=2PQ,求时间t.

相关试题