【题目】如图,在
中,
,
,
,
为边
上一动点,
于
,
于
,
为
中点,则
的最小值为( )
![]()
A.
B.4C.5D.![]()
参考答案:
【答案】D
【解析】
先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用面积法可求得AP最短时的长,然后即可求出AM最短时的长.
解:连接AP,在△ABC中,AB=6,AC=8,BC=10,
![]()
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴四边形AFPE是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=
AP,
根据直线外一点到直线上任一点的距离,垂线段最短,
即AP⊥BC时,AP最短,同样AM也最短,
∴S△ABC=
BCAP=
ABAC,
∴
×10AP=
×6×8,
∴AP最短时,AP=
,
∴当AM最短时,AM=
AP=
.
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:

(1)求扇形统计图中m的值,并补全条形统计图;
(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?
(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理? -
科目: 来源: 题型:
查看答案和解析>>【题目】我国古代数字的许多创新和发展都位居世界前列,如南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为( )

A.2019B.2018C.191D.190
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P是射线AD上一点,连接PB,沿PB将△APB折叠,得到△A′PB.
(1)如图2所示,当PA′⊥BC时,求线段PA的长度.
(2)当∠DPA′=10°时,求∠APB的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲船匀速顺流而下从
港到
港,同时乙船匀速逆流而上从
港到
港,
港处于
、
两港的正中间,某个时刻,甲船接到通知需立即掉头逆流而上到
处,到
处后迅速按原顺流速度驶向
港,最后甲、乙两船都到达了各自的目的地.甲、乙两船在静水中的速度相同,设甲、乙两船与
港的距离之和为
,行驶时间为
,
与
的部分关系如图,则当两船在
、
间某处相超时,两船距离
港的距离为________千米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.AO交⊙O于点E,延长AO交⊙O于点D,tanD=
,
(1)求
的值.
(2)设⊙O的半径为3,求AB的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行,甲型巴士每辆车的乘载量是乙型巴士的3倍,丙型巴士每辆可乘坐36人.现在旅游公司有甲、乙、丙型巴士若干辆,预计给该集团公司安排申型、丙型巴士共计8辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共296人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型包士,且有一辆乙型巴士多出两个空位,这样甲、乙两种型号巴士共计装载178人;则该集团公司共有________名员工.
相关试题