【题目】一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利情况如表所示:
销售方式 | 粗加工后销售 | 精加工后销售 |
每吨获利(元) | 1000 | 2000 |
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工. ①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
参考答案:
【答案】
(1)解:设应安排x天进行精加工,y天进行粗加工,
根据题意得
,
解得
,
答:应安排4天进行精加工,8天进行粗加工
(2)解:①精加工m吨,则粗加工(140﹣m)吨,根据题意得:
W=2000m+1000(140﹣m)
=1000m+140000;
②∵要求在不超过10天的时间内将所有蔬菜加工完,
∴
+
≤10,
解得:m≤5
∴0≤m≤5,
又∵在一次函数W=1000m+140000中,k=1000>0,
∴W随m的增大而增大,
∴当m=5时,W最大=1000×5+140000=145000.
∴精加工天数为5÷5=1,
粗加工天数为(140﹣5)÷15=9.
∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元
【解析】(1)本题等量关系为:精加工天数+粗加工天数=12,精加工吨数+粗加工吨数=140,列出方程组求解即可.(2)①根据精加工吨数和粗加工吨数的等量关系,用精加工吨数m来表示粗加工吨数,在列出W与m之间的关系,②根据题意要求先确定m的取值范围,然后表示W并求出W最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲,乙两辆汽车先后从A地出发到B地,甲车出发1小时后,乙车才出发,如图所示的l1和l2表示甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系:
(1)哪条线表示乙车离出发地的距离y与追赶时间x之间的关系?
(2)甲,乙两车的速度分别是多少?
(3)试分别确定甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系式;
(4)乙车能在1.5小时内追上甲车吗?若能,说明理由;若不能,求乙车出发几小时才能追上甲?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.

(1)若点F与B重合,求CE的长;
(2)若点F在线段AB上,且AF=CE,求CE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC上的点,且满足AC=DC=DE=BE=1,则tanA= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】解答题
(1)请在数轴上标出下列各数,按从小到大的顺序排列,并用“<”号连接:
2,﹣2
,﹣
,0.5;
(2)有理数a、b在数轴上的位置如图所示:

化简:|a|= ,|﹣b|= ,|1+a|= ,|1﹣b|= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣3).

(1)求抛物线的解析式;
(2)如图(1),己知点H(0,﹣1).问在抛物线上是否存在点G (点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;
(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】函数y=ax2+bx+a+b(a≠0)的图象可能是( )
A.
B.
C.
D.
相关试题