【题目】如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.
(1)求证:AC平分∠DAE;
(2)若cosM=
,BE=1,①求⊙O的半径;②求FN的长.
![]()
参考答案:
【答案】(1)证明见解析;(2)①⊙O的半径为4;②FN=
.
【解析】(1)连接OC,如图,利用切线的性质得OC⊥DE,则判断OC∥AD得到∠1=∠3,加上∠2=∠3,从而得到∠1=∠2;
(2)①利用圆周角定理和垂径定理得到
,则∠COE=∠FAB,所以∠FAB=∠M=∠COE,设⊙O的半径为r,然后在Rt△OCE中利用余弦的定义得到
,从而解方程求出r即可;
②连接BF,如图,先在Rt△AFB中利用余弦定义计算出AF=
,再计算出OC=3,接着证明△AFN∽△AEC,然后利用相似比可计算出FN的长.
(1)连接OC,如图,
∵直线DE与⊙O相切于点C,
∴OC⊥DE,
又∵AD⊥DE,
∴OC∥AD.
∴∠1=∠3
∵OA=OC,
∴∠2=∠3,
∴∠1=∠2,
∴AC平方∠DAE;
(2)①∵AB为直径,
∴∠AFB=90°,
而DE⊥AD,
∴BF∥DE,
∴OC⊥BF,
∴
,
∴∠COE=∠FAB,
而∠FAB=∠M,
∴∠COE=∠M,
设⊙O的半径为r,
在Rt△OCE中,cos∠COE=
,即
,解得r=4,
即⊙O的半径为4;
②连接BF,如图,
在Rt△AFB中,cos∠FAB=
,
∴AF=8×
,
在Rt△OCE中,OE=5,OC=4,
∴CE=3,
∵AB⊥FM,
∴
,
∴∠5=∠4,
∵FB∥DE,
∴∠5=∠E=∠4,
∵
,
∴∠1=∠2,
∴△AFN∽△AEC,
∴
,即
,
∴FN=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)请判断BD、CE有何大小、位置关系,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=
,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;
(2)求y与t的函数关系式;
(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?
(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AM∥BN,∠A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D.
(1)求∠CBD的度数;
(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;
(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.
(1)求证:△ABE≌△CAD;
(2) 求BE的长

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2.
(1)求抛物线的解析式;
(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当
时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.
(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=
)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间
用t表示,单位:小时
,采用随机抽样的方法进行问卷调查,调查结果按
,
,
,
分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:
求本次调查的学生人数;
求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;
若该校共有学生1200人,试估计每周课外阅读时间满足
的人数.
相关试题