【题目】如图所示,在平面直角坐标系中有四边形ABCD.
(1)写出四边形ABCD的顶点坐标;
(2)求线段AB的长;
(3)求四边形ABCD的面积.
![]()
参考答案:
【答案】(1)A(1,0);B(5,0);C(3,3);D(2,4);(2)4;(3)8.5.
【解析】
(1)根据图形,可以直接写出四边形ABCD的顶点坐标;
(2)根据点A和点B的坐标可以得到线段AB的长;
(3)根据图象中各点的坐标,可以求得四边形ABCD的面积.
(1)由图可得,
点A的坐标为(1,0),点B的坐标为(5,0),点C的坐标为(3,3),点D的坐标为(2,4);
(2)∵点A的坐标为(1,0),点B的坐标为(5,0),
∴AB=5-1=4;
(3)连接DE、CE,
则四边形ABCD的面积=S△ADE+S△DCE+S△CEB=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD是平行四边形,对角线AC平分∠DAB,AC与BD相交于点O,DE⊥AB于E点.(1)求证:四边形ABCD是菱形;
(2)若AC=8,BD=6,求DE的长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在美化校园的活动中,某综合实践小组的同学借如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形的花圃ABCD(篱笆只围AB、BC两边)设AB=xm.
(1)若想围得花圃面积为192cm2,求x的值;
(2)若在点P处有一棵小树与墙CD、AD的距离分别为15m和6m,要将这棵树围在花圃内(含边界,不考虑树干的粗细),求花圃面积S的最大值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形 ABCD 中,∠BAD=α,∠BCD=180°-α,BD 平分∠ABC.
(1)如图,若α=90°,根据教材中一个重要性质直接可得 DA=CD,这个性质是 ;

(2)问题解决:如图,求证:AD=CD;

(3)问题拓展:如图,在等腰△ABC 中,∠BAC=100°,BD 平分∠ABC,求证:BD+AD=BC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一天,小明和小红玩纸片拼图游戏.发现利用图①中的三种材料各若干可以拼出一些图形来解释某些等式,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.
(1)图③可以解释为等式: .
(2)图④中阴影部分的面积为 .观察图④请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 .
(3)如图⑤,小明利用7个长为b,宽为a的长方形拼成如图所示的大长方形;若AB=4,若长方形AGMB的面积与长方形EDHN的面积的差为S,试计算S的值(用含a,b的代数式表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的运货情况如下表:
第一次
第二次
甲种货车的辆数
2辆
5辆
乙种货车的辆数
3辆
6辆
累计运货重量
14吨
32吨
(1)分别求甲乙两种货车每辆载重多少吨?
(2)现租用该公司3辆甲种货车和5辆乙种货车刚好一次运完这批货物,如果按每吨付运费120元计算,货主应付运费多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等边三角形,BC=2
.点P从点A出发沿沿射线AB以1
的速度运动,过点P作PE∥BC交射线AC于点E,同时点Q从点C出发沿BC的延长线以1
的速度运动,连结BE、EQ.设点P的运动时间为t(
). 
(1)求证:△APE是等边三角形;
(2)直接写出CE的长(用含
的代数式表示);(3)当点P在边AB上,且不与点A、B重合时,求证:△BPE≌△ECQ.
(4)在不添加字母和连结其它线段的条件下,当图中等腰三角形的个数大于3时,直接写出t的值和对应的等腰三角形的个数.
相关试题