【题目】在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于 D,
![]()
(1)直接写直线y=2x+2与坐标轴所围成的图形的面积
(2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=
,过G作GF垂直BD,交BC于F,连接AP.
问:AP与PF有怎样的数量关系和位置关系?并说明理由;
(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.
参考答案:
【答案】(1)1;(2)AP=PF且AP⊥PF,理由见解析;(3)PD2+BG2=PG2,理由见解析
【解析】
(1)先根据一次函数解析式求出A,D的坐标,根据三角形的面积公式即可求解;
(2)过点A作AH⊥DB,先计算出AD=
,根据正方形的性质得到BD=
,AH=DH=
BD=
,由PG=
,得到DP+BG=
,则PH=BG,可证得Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;
(3)把△AGB绕点A点逆时针旋转90°得到△AMD,可得∠MDA=∠ABG=45°,DM=BG, ∠MAD=∠BAG,AM=AG,则∠MDP=90°,根据勾股定理有DP2+BG2=PM2,由∠PAG=45°,可得∠DAP+∠BAG=45°,即∠MAP=45°,易证得△AMP≌△AGP,得到MP=PG,即可DP2+BG2=PM2.
(1)∵直线y=2x+2交x轴于A,交y轴于 D,
令x=0,解得y=2,∴D(0,2)
令y=0,解得x=-1,∴A(-1,0)
∴AO=1,DO=2,
∴直线y=2x+2与坐标轴所围成的图形△AOD=
×1×2=1;
(2)AP=PF且AP⊥PF,理由如下:
过点A作AH⊥DB,如图,
∵A(-1,0),D(0,2)
∴AD=
=
=AB,
∵四边形ABCD是正方形
∴BD=
=
,
∴AH=DH=
BD=
,
而PG=
,
∴DP+BG=
,
而DH=DP+PH=![]()
∴PH=BG,
∵∠GBF=45°
∴BG=GF=HP
∴Rt△APH≌Rt△PFG,
∴AP=PF, ∠PAH=∠PFG
∴∠APH+∠GPF=90°即AP⊥PF;
![]()
(3)PD2+BG2=PG2,理由如下:
如图,把△AGB绕点A点逆时针旋转90°得到△AMD,连接MP,
![]()
∴∠MDA=∠ABG=45°,DM=BG, ∠MAD=∠BAG,AM=AG,
∴∠MDP=90°,
∴DP2+BG2=PM2,
又∵∠PAG=45°,
∴∠DAP+∠BAG=45°,
∴∠MAD+∠DAP =45°,即∠MAP=45°,
而AM=AG,
∴△AMP≌△AGP,
∴MP=PG,
∴PD2+BG2=PG2
-
科目: 来源: 题型:
查看答案和解析>>【题目】某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评.A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:
表1 演讲答辩得分表(单位:分)
A
B
C
D
E
甲
90
92
94
95
88
乙
89
86
87
94
91
表2 民主测评票数统计表(单位:张)
“好”票数
“较好”票数
“一般”票数
甲
40
7
3
乙
42
4
4
规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;
民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;
综合得分=演讲答辩得分×(1﹣a)+民主测评得分×a(0.5≤a≤0.8).
(1)当a=0.6时,甲的综合得分是多少?
(2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,根据图象提供的信息,解决下列问题:

(1)A,B两城相距多少千米?
(2)分别求甲、乙两车离开A城的距离y与x的关系式.
(3)求乙车出发后几小时追上甲车?
(4)求甲车出发几小时的时候,甲、乙两车相距50千米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD是BC上的中线,点E在线段AC上且EC=2AE,线段AD与线段BE交于点F,若△ABC对面积为3,则四边形EFDC的面积为__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
,
是边
上的两点,且有
,则图中等腰三角形的个数是( )
A.2B.6C.5D.7
-
科目: 来源: 题型:
查看答案和解析>>【题目】商场准备购进甲.乙两种商品,若购进甲商品80个,乙商品40个,需要800元;若购进甲商品50个,乙商品30个,需要550元.
(1)求商场购进甲.乙两种商品每个需要多少元?
(2)商场准备1000元全部用来购进甲.乙两种商品,计划销售每个甲种商品可获利润4元,销售每个乙种商品可获利润5元,销售这两种玩具的总利润不低于600元,那么商场最多购进乙种商品多少个?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,在△ABC中,∠B<∠C,AD,AE分别是△ABC的高和角平分线,
(1)若∠B=30°,∠C=50°.则∠DAE的度数是 .(直接写出答案)
(2)写出∠DAE、∠B、∠C的数量关系: ,并证明你的结论.

相关试题