【题目】现计划把一批货物用一列火车运往某地
已知这列火车可挂A,B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用B型车厢每节费用为8000元.
设运送这批货物的总费用为y元,这列火车挂A型车厢x节,写出y关于x的函数表达式,并求出自变量x的取值范围;
已知A型车厢数不少于B型车厢数,运输总费用不低于276000元,问有哪些不同运送方案?
参考答案:
【答案】(1)函数关系式为
且x为整数
;(2)运送方案有:A型车厢20节,B型车厢20节;A型车厢21节,B型车厢19节;A型车厢22节,B型车厢18节.
【解析】
(1)根据总费用=6000×A型车厢节数+8000×B型车厢节数解答即可; (2)根据题意列出不等式组,进而解答即可.
解:
设用A型车厢x节,则用B型车厢
节,总运费为y元,
依题意,得
;
,
的取值范围是
且x为整数,
函数关系式为
且x为整数![]()
由题意得,![]()
解得:
,
为整数,
运送方案有:A型车厢20节,B型车厢20节;
A型车厢21节,B型车厢19节;
A型车厢22节,B型车厢18节.
-
科目: 来源: 题型:
查看答案和解析>>【题目】按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作. ①如果输入x的值为5,那么操作进行______次才停止.
②如果输入x的值为2k-1,并且操作进行四次才停止,那么k的最大值是________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】试根据图中信息,解答下列问题:
(1)购买8根跳绳需________元,购买14根跳绳需________元;
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求小红购买跳绳的根数;若没有,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:O是坐标原点,P(m,n)(m>0)是函数y=
(k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+
.
(1)当n=1时,求点A的坐标;
(2)若OP=AP,求k的值;
(3)设n是小于20的整数,且k≠
,求OP2的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某汽车制造厂开发一款新式电动汽车,计划一年生产安装360辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练和2名新工人每月可安装12辆电动汽车;2名熟练工和3名新工人每月可安装21辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km;正确的是( )

A. ①② B. ①③ C. ①④ D. ①③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知抛物线y=﹣
x2﹣
x+c与x轴相交于A、B两点(B点在A点的左侧),与y轴相交于C点,且AB=10.
(1)求这条抛物线的解析式;
(2)如图2,D点在x轴上,且在A点的右侧,E点为抛物线上第二象限内的点,连接ED交抛物线于第二象限内的另外一点F,点E到y轴的距离与点F到y轴的距离之比为3:1,已知tan∠BDE=
,求点E的坐标;
(3)如图3,在(2)的条件下,点G由B出发,沿x轴负方向运动,连接EG,点H在线段EG上,连接DH,∠EDH=∠EGB,过点E作EK⊥DH,与抛物线相应点E,若EK=EG,求点K的坐标.
相关试题