【题目】试根据图中信息,解答下列问题:
(1)购买8根跳绳需________元,购买14根跳绳需________元;
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求小红购买跳绳的根数;若没有,请说明理由.
![]()
参考答案:
【答案】(1)200;280.(2)有这种可能,小红购买了跳绳11根.
【解析】
(1)根据总钱数=单价×购买数量代入数据即可得出结论;
(2)设小红购买了跳绳x根,则小明购买了(x-2)根,根据总钱数=单价×购买数量,结合小红比小明少花5元即可得出关于x的一元一次方程,解之即可得出结论.
解:(1)25×8=200(元);
25×0.8×14=280(元).
故答案为:200;280.
(2)有这种可能;
设小红购买了跳绳x根,则小明购买了(x-2)根,
根据题意得:25×0.8x=25(x-2)-5,
解得:x=11.
故有这种可能,小红购买了跳绳11根.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点
,直线
与两坐标轴分别交于A,B两点
点D,E分别是OB,AB上的动点,则
周长的最小值是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,河的两岸l1与l2相互平行,A,B是l1上的两点,C,D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作. ①如果输入x的值为5,那么操作进行______次才停止.
②如果输入x的值为2k-1,并且操作进行四次才停止,那么k的最大值是________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:O是坐标原点,P(m,n)(m>0)是函数y=
(k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+
.
(1)当n=1时,求点A的坐标;
(2)若OP=AP,求k的值;
(3)设n是小于20的整数,且k≠
,求OP2的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】现计划把一批货物用一列火车运往某地
已知这列火车可挂A,B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用B型车厢每节费用为8000元.
设运送这批货物的总费用为y元,这列火车挂A型车厢x节,写出y关于x的函数表达式,并求出自变量x的取值范围;
已知A型车厢数不少于B型车厢数,运输总费用不低于276000元,问有哪些不同运送方案? -
科目: 来源: 题型:
查看答案和解析>>【题目】某汽车制造厂开发一款新式电动汽车,计划一年生产安装360辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练和2名新工人每月可安装12辆电动汽车;2名熟练工和3名新工人每月可安装21辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?
相关试题