【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3).![]()
(1)求抛物线的解析式.
(2)D是第一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD设点D的横坐标为m,△BCD的面积为S.
①求S关于m的函数关系式及自变量m的取值范围.
②当m为何值时,S有最大值,并求这个最大值.
参考答案:
【答案】
(1)解:∵抛物线与x轴交于A(﹣1,0)、B(3,0)两点,
∴设抛物线的解析式为y=a(x+1)(x﹣3),
又∵点C(0,3)在抛物线图象上,
∴3=a×(0+1)×(0﹣3),解得:a=﹣1.
∴抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.
故答案为:y=﹣x2+2x+3.
(2)解:①设直线BC的函数解析式为y=kx+b.
∵直线BC过点B(3,0),C(0,3),
∴
,解得:
,
∴y=﹣x+3.
设D(m,﹣m2+2m+3),E(m,﹣m+3),
∴DE=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.
∴S=
OBDE=
(﹣m2+3m)=﹣
m2+
m,(0<m<3)
②S=﹣
m2+
m=﹣
(m﹣
)2+
,
∵﹣
<0,
∴当m=
时,S有最大值,最大值S= ![]()
【解析】(1)因为抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3),用待定系数法求出抛物线的解析式;(2)因为直线BC过点B(3,0),C(0,3),用待定系数法求出直线的解析式,根据△BCD的面积为S,求出s与m的关系,得到m的值,求出S的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,
的顶点都在格点上,建立平面直角坐标系,(1)点A的坐标为______,点C的坐标为______;
(2)将
先向右平移2个单位长度,再向下平移3个单位长度,请画出平移后的
,并分别写出点A1、B1、C1的坐标;(3)求
的面积.
0 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知反比例函数
的图象经过点(
,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).
(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,AB=AC.

(1)尺规作图:作∠BAC的角平分线AD,交BC于点D.(不要求写作法,保留作图痕迹)
(2)延长AD至E点,使DE=AD,连接BE、CE.求证:四边形ABEC是菱形. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知三角形的一锐角α(45°<α<90°)的正弦和余弦分别是方程(m+5)x2﹣(2m﹣5)x+12=0的两根,求:
(1)m的值;
(2)α的正弦值和余弦值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.

(1)求证:OF∥BE;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC、FP交于点G,连接OE并延长交直线DC于H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,关于x的二次函数y=x2﹣x+m的图象交x轴的正半轴于A,B两点,交y轴的正半轴于C点,如果x=a时,y<0,那么关于x的一次函数y=(a﹣1)x+m的图象可能是( )

A.
B.
C.
D.
相关试题