【题目】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,
的顶点都在格点上,建立平面直角坐标系,
(1)点A的坐标为______,点C的坐标为______;
(2)将
先向右平移2个单位长度,再向下平移3个单位长度,请画出平移后的
,并分别写出点A1、B1、C1的坐标;
(3)求
的面积.
0
参考答案:
【答案】(1)
,
;(2)图见解析,
;(3)
.
【解析】
(1)直接根据点A、C在平面直角坐标系中的位置即可得;
(2)先根据点坐标的平移变化规律得出点
的坐标,再描点、顺次连接即可得;
(3)如图(见解析),利用大长方形的面积减去三个直角三角形的面积即可得.
(1)由点A、C在平面直角坐标系中的位置得:点A的坐标为
,点C的坐标为![]()
故答案为:
,
;
(2)由点B在平面直角坐标系中的位置得:点B的坐标为![]()
由点坐标的平移变化规律得:![]()
即![]()
再描点、顺次连接即可得到
,如图所示:
(3)由点
的坐标得:![]()
则![]()
![]()
![]()
![]()
即
的面积为
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,从水平地面看一山坡上的通讯铁塔PC,在点A处用测角仪测得塔顶端点P的仰角是45°,向前走9m到达B点,用测角仪测得塔顶端点P和塔底端点C的仰角分别是60°和30°.

(1)求∠BPC的度数.
(2)求该铁塔PF的高度,(结果精确到0.1m,参考数据:
.) -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,AB∥CD,点P在AB、CD外部,若∠B=60°,∠D=30°,则∠BPD= °;
(2)如图2,AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;
(3)在图2中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图3,若∠BPD=86°,∠BMD=40°,求∠B+∠D的度数.



图1 图2 图3
-
科目: 来源: 题型:
查看答案和解析>>【题目】CD是经过∠BCA定点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠β.
(1)若直线CD经过∠BCA内部,且E、F在射线CD上,
①若∠BCA=90°,∠β=90°,例如左边图,则BE CF,EF |BE - AF|
(填“>”,“<”,“=”);
②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如中间图,①中的两个结论还成立吗?并说明理由;
(2)如右边图,若直线CD经过∠BCA外部,且∠β=∠BCA,请直接写出线段EF、BE、AF的数量关系(不需要证明).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知反比例函数
的图象经过点(
,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).
(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,AB=AC.

(1)尺规作图:作∠BAC的角平分线AD,交BC于点D.(不要求写作法,保留作图痕迹)
(2)延长AD至E点,使DE=AD,连接BE、CE.求证:四边形ABEC是菱形. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3).

(1)求抛物线的解析式.
(2)D是第一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD设点D的横坐标为m,△BCD的面积为S.
①求S关于m的函数关系式及自变量m的取值范围.
②当m为何值时,S有最大值,并求这个最大值.
相关试题