【题目】如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )
![]()
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
参考答案:
【答案】A
【解析】
①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP,再根据角平分线的定义
然后利用三角形的内角和定理整理即可得解;
②③先根据直角的关系求出
,然后利用角角边证明△AHP与△FDP全等,根据全等三角形对应边相等可得
,对应角相等可得
然后利用平角的关系求出
,再利用角角边证明△ABP与△FBP全等,然后根据全等三角形对应边相等得到
,从而得解;
④根据PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜边大于直角边,AF>AP,从而得出本小题错误.
①∵∠ABC的角平分线BE和∠BAC的外角平分线,
∴
在△ABP中,
,故本小题正确;
②③∵
∴
∴∠AHP=∠FDP,
∵PF⊥AD,
∴
在△AHP与△FDP中,
∴△AHP≌△FDP(AAS),
∴DF=AH,
∵AD为∠BAC的外角平分线,∠PFD=∠HAP,
∴
又∵
∴∠PAE=∠PFD,
∵∠ABC的角平分线,
∴∠ABP=∠FBP,
在△ABP与△FBP中,
∴△ABP≌△FBP(AAS),
∴AB=BF,AP=PF故②小题正确;
∵BD=DF+BF,
∴BD=AH+AB,
∴BDAH=AB,故③小题正确;
④∵PF⊥AD,
∴AG⊥DH,
∵AP=PF,PF⊥AD,
∴
∴
∴DG=AG,
∵
AG⊥DH,
∴△ADG与△FGH都是等腰直角三角形,
∴DG=AG,GH=GF,
∴DG=GH+AF,
∵AF>AP,
∴DG=AP+GH不成立,故本小题错误,
综上所述①②③正确。
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=
在同一坐标系内的图象大致为( ) 
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠ABC=70°,以B为圆心,任意长为半径画弧交AB,BC于点E,F,再分别以点E,F为圆心、以大于
EF长为半径画弧,两弧交于点P,作射线BP交AC于点D,则∠BDC为( )度.
A. 65 B. 75 C. 80 D. 85
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角三角形纸片的两直角边长分别为4,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,AB=AC,AF⊥BC于点F,D、E分别为BF、CF的中点,则图中全等三角形共有____对.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A是反比例函数y1=
(x>0)图象上一点,过点A作x轴的平行线,交反比例函数y2=
(x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的两外角平分线交于点P,易证∠P=90°-
∠A;△ABC的两内角的平分线交于点Q,易证∠BQC=90°+
∠A;那么△ABC的内角平分线BM与外角平分CM的夹角∠M=_____∠A.
相关试题