【题目】如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.
![]()
(1)求C点的坐标;
(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;
(3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由
参考答案:
【答案】(1)(﹣6,﹣2);(2)见解析;(3)见解析.
【解析】
(1)证明△MAC≌△OBA(AAS),根据三角形全等时对应边相等可得C的坐标;
(2)根据平移规律可得三个H点的坐标;
(3)如图3,作点M(1,-1)关于y轴的对点M'(-1,-1),连接CF1、MF1,由于|FM-FC|≤CM,当C、M'、F三点共线时取等号,连接CM',与y轴交于点F即为所求,根据直线解析式,令x=0可得与y轴的交点F的坐标.
解:(1)如图1,过C作CM⊥x轴于M点,
∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,
则∠MAC=∠OBA,
在△MAC和△OBA中,
,
∴△MAC≌△OBA(AAS),
∴CM=OA=2,MA=OB=4,
∴OM=OA+AM=2+4=6,
∴点C的坐标为(﹣6,﹣2)
(2)答:如图2,存在三个H点,
∵A(﹣2,0),B(0,﹣4),C(﹣6,﹣2),
∴根据B到A的平移规律可得C到H1的平移规律,则H1(﹣8,2),
同理得H2(﹣4,﹣6)、H3(4,﹣2)
(3)答:存在,F(0,﹣
),
如图3,作点M(1,﹣1)关于y轴的对点M'(﹣1,﹣1),
设y轴上存在一点F1,连接CF1、M'F1,由于|FM﹣FC|≤CM',
当C、M'、F三点共线时取等号,
连接CM',与y轴交于点F即为所求,
设CM'的解析式为:y=kx+b,
把C(﹣6,﹣2)、M'(﹣1,﹣1)代入得,
,
解得:
,
∴
,
当x=0时,y=﹣
,
∴F(0,﹣
).
![]()
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E是平行四边形ABCD的边BC的中点,连接AE并延长交DC的延长线于点F,连接AC、BF,∠AEC=2∠ABC;(1)求证:四边形ABFC是矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC的面积。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接OC、BC、CE.
(1)求证:CD是⊙O的切线;
(2)若圆O的直径等于2,填空:
①当AD= 时,四边形OADC是正方形;
②当AD= 时,四边形OECB是菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.
(1)求证:DE=CF;
(2)求EF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下面三行数:

(1)按第①行数排列的规律,第7个数是____,第
个数是_______(用含
的式子表示)(2)观察第②行数与第①行数的关系,第②行第
个数是________(用含
的式子表示)观察第③行数与第①行数的关系,第③行第
个数是__________(用含
的式子表示)(3)取每行数的第8个数,计算这三个数的和.
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简题.
(1)合并下列同类项: 4a2-3b2+2ab-4a2-3b2+5ba
(2)先化简,再求值:2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中|x﹣1|+(y+2)2=0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上的一点,CE交⊙O于点F,连接OC,AC,若∠DAO=105°,∠E=30°.
(Ⅰ)求∠OCE的度数;
(Ⅱ)若⊙O的半径为2
,求线段EF的长.
相关试题