【题目】如图,点E是平行四边形ABCD的边BC的中点,连接AE并延长交DC的延长线于点F,连接AC、BF,∠AEC=2∠ABC;(1)求证:四边形ABFC是矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC的面积。
![]()
参考答案:
【答案】(1)见解析;(2)
.
【解析】
(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对顶角相等,利用ASA可得出三角形ABE与三角形FCE全等;进而得出AB=FC,即可得出四边形ABFC是平行四边形,再由直角三角形的判定方法得出△BFC是直角三角形,即可得出平行四边形ABFC是矩形.
(2)由等边三角形的性质得出∠AFC=60°,AF=DF=4,得出CF=CD=2,由矩形的性质得出∠ACF=90°,得出AC=
CF=2
,即可得出四边形ABFC的面积=ACCF=4
.
解:(1)∵四边形ABCD为平行四边形,
∴AB∥DC,
∴∠ABE=∠ECF,
又∵E为BC的中点
∴BE=CE,
在△ABE和△FCE中,
,
∴△ABE≌△FCE(ASA);
∴AE=EF,AB=CF,
∴四边形ABFC是平行四边形,
∵∠AEC=2∠ABC=∠ABC+∠BAE,
∴∠ABC=BAE,
∴AE=BE
∵AE=EF,BE=CE,
∴AF=BC,
∴平行四边形ABFC是矩形;
(2)∵△AFD是等边三角形,
∴∠AFC=60°,AF=DF=4,
∴CF=CD=2,
∵四边形ABFC是矩形,
∴∠ACF=90°,
∴AC=
CF=2
,
∴四边形ABFC的面积=ACCF=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知整数a1,a2,a3,a4,……滿足下列条件:a1=0,a2=-│a1+1│,a3=-│a2+2│,a4=-│a3+3│,·……,依次类推,则a2017的值为 ( )
A.-1007B.-1008C.-1009D.-2016
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】钓鱼岛自古就是中国的!2017年5月18日,中国海警2305,2308,2166,33115舰船队在中国的钓鱼岛领海内巡航,如图,我军以30km/h的速度在钓鱼岛A附近进行合法巡逻,当巡逻舰行驶到B处时,战士发现A在他的东北方向,巡逻舰继续向北航行40分钟后到达点C,发现A在他的东偏北15°方向,求此时巡逻舰与钓鱼岛的距离(
≈1.414,结果精确到0.01)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接OC、BC、CE.
(1)求证:CD是⊙O的切线;
(2)若圆O的直径等于2,填空:
①当AD= 时,四边形OADC是正方形;
②当AD= 时,四边形OECB是菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.
(1)求证:DE=CF;
(2)求EF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.

(1)求C点的坐标;
(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;
(3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由
相关试题