【题目】如图所示,已知抛物线经过点A(-2,0)、B(4,0)、C(0,-8),抛物线y=ax2+bx+c(a≠0)与直线y=x-4交于B , D两点.![]()
(1)求抛物线的解析式并直接写出D点的坐标;
(2)点P为抛物线上的一个动点,且在直线BD下方,试求出△BDP面积的最大值及此时点P的坐标;
(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F , 交抛物线于点G . 当△QDG为直角三角形时,求点Q的坐标.
参考答案:
【答案】
(1)
设抛物线的解析式为y=ax2+bx+c
∵抛物线经过点A(-2,0)、B(4,0)、C(0,-8)
∴
,解得
.
∴抛物线的解析式为y=x2-2x-8
点D的坐标为(-1,-5)
(2)
过P作PE∥y轴,交直线AB于点E
![]()
设P(x,x2-2x-8)则E(x,x-4)
∴PE=x-4-(x2-2x-8)=-x2+3x+4
∴S△BDP=S△DEP+S△BEP=
PE·(xE-xD)+
PE·(xB-xE)
=
PE·(xB-xD)=
PE=
(-x2+3x+4)
=-
(x-
)2+ ![]()
∴当x=
时,△BDP面积的最大值为 ![]()
此时点P的坐标为(
,-
)
(3)
设直线y=x-4与y轴相交于点K,则K(0,-4)
∵B(4,0),∴OB=OK=4,∴∠OKB=∠OBK=45°
∵QF⊥x轴,∴∠DQG=45°
若△QDG为直角三角形,则△QDG是等腰直角三角形
①∠QDG=90°,过D作DH⊥QG于H,∴QG=2DH,
∴-x2+3x+4=2(x+1),解得x 1=-1(舍去),
x 2=2,∴Q1(2,-2)
②∠DGQ=90°,则DH=QH,
∴-x2+3x+4=x+1,解得x 1=-1(舍去),x 2=3,∴P2(3,-1)
综上所述,当△QDG为直角三角形时,点Q的坐标为(2,-2)或(3,-1)
![]()
【解析】(1)设出一元二次函数,利用待定系数法求出a、b、c的值;
(2)设出PE两点的坐标,从图中可以看出SBDP=SEPB+SEPD.运用二次函数的性质求出SBDP的的最值及P点的坐标;
(3)一次函数为y=x-4,则意味着∠OKB=∠OBK=45°,则如果△QDG是直角三角形,必定是等腰直角三角形。但接下来要分两种情况去进行讨论:①∠QDG=90°;②∠DGQ=90°.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某文具店5月份购进一批A种毕业纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请求出y与x的函数关系式;
(2)该文具店计划6月份新进一批A、B两种纪念册共100本,且B种纪念册的进货数量不超过A种纪念册的2倍,应如何进货才能使这批纪念册获利最多?A、B两种型号纪念册的进货和销售价格如下表:A种
B种
进货价格(元/本)
20
24
销售价格(元/本)
25
30
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,Rt△ABC中,∠C=90°,AC=6,BC=8,以B为圆心,半径为3的⊙O沿BC方向以每秒1个单位的速度平移,当⊙O运动到与直线相交于点C时(点O在BC上),⊙O停止运动.


(1) (2) (3)
(1)当运动停止时,试判断直线AB与⊙O的位置关系,并证明你的结论;
(2)在平移过程中,若⊙O与AB相切于点D,连接CD , 求△ACD的面积;
(3)在平移过程中,若⊙O经过AB的中点G时, E、F为OC上的两个动点,且EF=1.6,当四边形AGEF的周长最小时,试求OE的长度. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,数学实习小组在高300米的山腰(即PH=300米)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°,已知tan∠ABC=
,点P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥BC,则A,B两点间的距离为米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列变形中:
①由方程
=2去分母,得x﹣12=10;②由方程
x=
两边同除以
,得x=1;③由方程6x﹣4=x+4移项,得7x=0;
④由方程2﹣
两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是( )个.
A. 4 B. 3 C. 2 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】西瓜和甜瓜是新疆特色水果,小明的妈妈先购买了2千克西瓜和3千克甜瓜,共花费9元;后又购买了1千克西瓜和2千克甜瓜,共花费5.5元.(每次两种水果的售价都不变)
(1)求两种水果的售价分别是每千克多少元?
(2)如果还需购买两种水果共12千克,要求甜瓜的数量不少于西瓜数量的两倍,请设计一种购买方案,使所需总费用最低. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.

(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论.
相关试题