【题目】已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点. ![]()
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论.
参考答案:
【答案】
(1)证明:∵四边形ABCD是矩形,
∴∠A=∠D=90°,AB=DC,
∵M是AD的中点,
∴AM=DM,
在△ABM和△DCM中,
,
∴△ABM≌△DCM(SAS)
(2)解:四边形MENF是菱形;理由如下:
由(1)得:△ABM≌△DCM,
∴BM=CM,
∵E、F分别是线段BM、CM的中点,
∴ME=BE=
BM,MF=CF=
CM,
∴ME=MF,
又∵N是BC的中点,
∴EN、FN是△BCM的中位线,
∴EN=
CM,FN=
BM,
∴EN=FN=ME=MF,
∴四边形MENF是菱形.
【解析】(1)由矩形的性质得出AB=DC,∠A=∠D,再由M是AD的中点,根据SAS即可证明△ABM≌△DCM;(2)先由(1)得出BM=CM,再由已知条件证出ME=MF,EN、FN是△BCM的中位线,即可证出EN=FN=ME=MF,得出四边形MENF是菱形.
【考点精析】通过灵活运用矩形的性质,掌握矩形的四个角都是直角,矩形的对角线相等即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知抛物线经过点A(-2,0)、B(4,0)、C(0,-8),抛物线y=ax2+bx+c(a≠0)与直线y=x-4交于B , D两点.

(1)求抛物线的解析式并直接写出D点的坐标;
(2)点P为抛物线上的一个动点,且在直线BD下方,试求出△BDP面积的最大值及此时点P的坐标;
(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F , 交抛物线于点G . 当△QDG为直角三角形时,求点Q的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列变形中:
①由方程
=2去分母,得x﹣12=10;②由方程
x=
两边同除以
,得x=1;③由方程6x﹣4=x+4移项,得7x=0;
④由方程2﹣
两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是( )个.
A. 4 B. 3 C. 2 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】西瓜和甜瓜是新疆特色水果,小明的妈妈先购买了2千克西瓜和3千克甜瓜,共花费9元;后又购买了1千克西瓜和2千克甜瓜,共花费5.5元.(每次两种水果的售价都不变)
(1)求两种水果的售价分别是每千克多少元?
(2)如果还需购买两种水果共12千克,要求甜瓜的数量不少于西瓜数量的两倍,请设计一种购买方案,使所需总费用最低. -
科目: 来源: 题型:
查看答案和解析>>【题目】小明平时喜欢玩“QQ农场”游戏,本学期初二年级数学备课组组织了几次数学反馈性测试,小明的数学成绩如下表:
月份x(月)
9
10
11
12
…
成绩y(分)
90
80
70
60
…
(1)以月份为x轴,成绩为y轴,根据上表提供的数据在下列直角坐标系中描点;

(2)观察①中所描点的位置关系,照这样的发展趋势,猜想y与x之间的函数关系,并求出所猜想的函数表达式;
(3)若小明继续沉溺于“QQ农场”游戏,照这样的发展趋势,请你估计元月份的期末考试中小明的数学成绩,并用一句话对小明提出一些建议.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的盒子里装有40个黑、白两种颜色的球,这些球除颜色外完全相同.小丽做摸球实验,搅匀后她从盒子里摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,表是实验中的一组统计数据:
摸球的次数n
100
200
300
500
800
1000
3000
摸到白球的次数m
65
124
178
302
481
599
1803
摸到白球的频率

0.65
0.62
0.593
0.604
0.601
0.599
0.601
若从盒子里随机摸出一个球,则摸到白球的概率的估计值为 . (精确到0.1)
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”

小艾的作法如下:
(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.
(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.
(3)两弧分别交于点P和点M
(4)连接PM,与直线l交于点Q,直线PQ即为所求.
老师表扬了小艾的作法是对的.
请回答:小艾这样作图的依据是_____.
相关试题