【题目】下列美丽的图案,是轴对称图形但不是中心对称图形的是( )
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】B
【解析】解:A、既是轴对称图形,又是中心对称图形,不符合题意; B、是轴对称图形,不是中心对称图形,符合题意;
C、既是轴对称图形,又是中心对称图形,不符合题意;
D、既是轴对称图形,又是中心对称图形,不符合题意.
故选B.
【考点精析】关于本题考查的轴对称图形和中心对称及中心对称图形,需要了解两个完全一样的图形关于某条直线对折,如果两边能够完全重合,我们就说这两个图形成轴对称,这条直线就对称轴;如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称;如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AC⊥BC,AD⊥BD,E为AB的中点,
(1)如图1,求证:△ECD是等腰三角形;
(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,菱形ABCD中,AB=10cm,BD=12cm,对角线AC与BD相交于点O,直线MN以1cm/s从点D出发,沿DB方向匀速运动,运动过程中始终保持MN⊥BD,垂足是点P,过点P作PQ⊥BC,交BC于点Q.(0<t<6)

(1)求线段PQ的长;(用含t的代数式表示)
(2)设△MQP的面积为y(单位:cm2),求y与t的函数关系式;
(3)是否存在某时刻t,使线段MQ恰好经过点O?若存在求出此时t的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:
次数
1
2
3
4
5
6
7
8
9
10
黑棋数
1
3
0
2
3
4
2
1
1
3
根据以上数据,估算袋中的白棋子数量为( )
A.60枚
B.50枚
C.40枚
D.30枚 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )

A.80°
B.70°
C.40°
D.20° -
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品,这两种笔记本的单价分别是12元和8元.根据比赛设奖情况,需购买笔记本共30本,并且所购买A笔记本的数量要不多于B笔记本数量的
,但又不少于B笔记本数量
,设买A笔记本n本,买两种笔记本的总费为w元.(1)写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;
(2)购买这两种笔记本各多少时,费用最少?最少的费用是多少元?
(3)商店为了促销,决定仅对A种类型的笔记本每本让利a元销售,B种类型笔记本售价不变.问购买这两种笔记本各多少本时花费最少?
相关试题