【题目】如图,已知AC⊥BC,AD⊥BD,E为AB的中点,
(1)如图1,求证:△ECD是等腰三角形;
(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.
![]()
参考答案:
【答案】(1)详见解析;(2)
.
【解析】
(1) 求出∠ACB=90°,∠ADB=90°,根据直角三角形定点和底边中点的连线等于底边的一半即可求解.
(2)求出DE⊥AB,再根据相关关系求出△ECD是等腰三角形,可得CD的长.
(1)证明:∵AC⊥BC,AD⊥BD,
∴∠ACB=90°,∠ADB=90°,又∵E为AB的中点,
∴CE=
AB,DE=
AB
∴CE=DE,即△ECD是等腰三角形;
(2)∵AD=BD,E为AB的中点,
∴DE⊥AB,
已知DE=4,EF=3,
∴DF=5,
过点E作EH⊥CD,
∵∠FED=90°,EH⊥DF,
∴EH=
=
,
∴DH=
=
,
∵△ECD是等腰三角形,
∴CD=2DH=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】探究题

【问题提出】
已知任意三角形的两边及夹角(是锐角),求三角形的面积.
【问题探究】
为了解决上述问题,让我们从特殊到一般展开探究.
探究:在Rt△ABC(图1)中,∠ABC=90°,AC=b,BC=a,∠C=α,求△ABC的面积(用含a、b、α的代数式表示)
在Rt△ABC中,∠ABC=90°
∴sinα=
∴AB=bsinα
∴S△ABC=
BCAB=
absinα
(1)探究一:
锐角△ABC(图2)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面积.(用含a、b、α的代数式表示)
(2)探究二:
钝角△ABC(图3)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面积.(用含a、b、α的代数式表示)
(3)【问题解决】
用文字叙述:已知任意三角形的两边及夹角(是锐角),求三角形面积的方法
是
(4)已知平行四边形ABCD(图4)中,AB=b,BC=a,∠B=α(0°<α<90°)
求:平行四边形ABCD的面积.(用含a、b、α的代数式表示) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度数.
请完善解答过程,并在括号内填写相应的理论依据.
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代换)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性质)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,菱形ABCD中,AB=10cm,BD=12cm,对角线AC与BD相交于点O,直线MN以1cm/s从点D出发,沿DB方向匀速运动,运动过程中始终保持MN⊥BD,垂足是点P,过点P作PQ⊥BC,交BC于点Q.(0<t<6)

(1)求线段PQ的长;(用含t的代数式表示)
(2)设△MQP的面积为y(单位:cm2),求y与t的函数关系式;
(3)是否存在某时刻t,使线段MQ恰好经过点O?若存在求出此时t的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列美丽的图案,是轴对称图形但不是中心对称图形的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:
次数
1
2
3
4
5
6
7
8
9
10
黑棋数
1
3
0
2
3
4
2
1
1
3
根据以上数据,估算袋中的白棋子数量为( )
A.60枚
B.50枚
C.40枚
D.30枚
相关试题