【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°
(1) 求证:四边形ABCD是矩形
(2) 若DE⊥AC交BC于E,∠ADB∶∠CDB=2∶3,则∠BDE的度数是多少?
![]()
参考答案:
【答案】(1)证明见解析(2)18°
【解析】
(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;
(2)求出∠ADB的度数,根据三角形内角和定理求出∠AOB,从而可得到∠CDO,最后,依据∠BDE=90°-∠DOC求解即可.
(1)∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADC=90°,
∴四边形ABCD是矩形;
(2)∵∠ADC=90°,∠ADB:∠CDB=2:3,
∴∠ADB=36°,
∵四边形ABCD是矩形,
∴OA=OD,
∴∠OAD=∠ADB=36°,
∴∠DOC=72°,
∵DE⊥AC,
∴∠BDE=90°-∠DOC=18°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO,连结CD

(1)求证:CD是⊙O的切线;
(2)若AB=2,CD=
,求AD的长.(结果保留根号) -
科目: 来源: 题型:
查看答案和解析>>【题目】某商店试销一种新商品,该商品的进价为40元/件,经过一段时间的试销发现,每月的销售量会因售价在40~70元之间的调整而不同.当售价在40~50元时,每月销售量都为60件;当售价在50~70元时,每月销售量与售价的关系如图所示,令每月销售量为y件,售价为x元/件,每月的总利润为Q元.

(1)当售价在50~70元时,求每月销售量为y与x的函数关系式?
(2)当该商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?
(3)若该商店每月采购这种新商品的进货款不低于1760元,则该商品每月最大利润为元. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E为矩形ABCD中AD边中点,将矩形ABCD沿CE折叠,使点D落在矩形内部的点F处,延长CF交AB于点G,连接AF

(1)求证:AF∥CE;
(2)探究线段AF,EF,EC之间的数量关系,并说明理由;
(3)若BC=6,BG=8,求AF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】小青在本学期的数学成绩如下表所示(成绩均取整数):

(1)计算小青本学期的平时平均成绩;
(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期小青的期末考试成绩x至少为多少分才能保证达到总评成绩90分的最低目标?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB:y=kx+2k交x轴于点A,交y轴正半轴于点B,且S△OAB=3
(1) 求A、B两点的坐标
(2) 将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元
(1) 求每台甲型手机和乙型手机的利润
(2) 专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机x台,这120台手机全部销售的销售总利润为y元
① 直接写出y关于x的函数关系式_______________,x的取值范围是_______________
② 该商店如何进货才能使销售总利润最大?说明原因
(3) 专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由
相关试题