【题目】如图,直线AB:y=kx+2k交x轴于点A,交y轴正半轴于点B,且S△OAB=3
(1) 求A、B两点的坐标
(2) 将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.
![]()
参考答案:
【答案】(1)(-2,0)、(0,3)(2)y=
【解析】
(1)依据直线AB:y=kx+2k交x轴于点A,交y轴正半轴于点B,且S△OAB=3,即可得到A、B两点的坐标;
(2)过点B作BD⊥BA,交AC的延长线于点D,过点D作DH⊥y轴于H.易得△ABO≌△BDH,即可得出D(3,1),设直线AC的解析式为y=ax+b,利用待定系数法即可求得答案.
(1)∵直线AB:y=kx+2k,
令x=0,则y=2k,即B(0,2k),
令y=0,则x=-2,即A(-2,0),
∵S△OAB=3,
∴![]()
∴2k=3,
∴A、B两点的坐标为(-2,0)、(0,3);
(2)如图,过点B作BD⊥BA,交AC的延长线于点D,过点D作DH⊥y轴于H.
∵∠BAC=45°,
∴△ABD是等腰直角三角形,
∴AB=BD,
∵∠AOB=∠BHD=90°,
∴∠ABO=∠BDH,
∴△ABO≌△BDH,
∴DH=BO=3,BH=AO=2,
∴HO=3-2=1,
∴D(3,1),
设直线AC的解析式为y=ax+b,
由A、D两点的坐标可得
,
解得:
,
∴AC的解析式为:y=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E为矩形ABCD中AD边中点,将矩形ABCD沿CE折叠,使点D落在矩形内部的点F处,延长CF交AB于点G,连接AF

(1)求证:AF∥CE;
(2)探究线段AF,EF,EC之间的数量关系,并说明理由;
(3)若BC=6,BG=8,求AF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°
(1) 求证:四边形ABCD是矩形
(2) 若DE⊥AC交BC于E,∠ADB∶∠CDB=2∶3,则∠BDE的度数是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】小青在本学期的数学成绩如下表所示(成绩均取整数):

(1)计算小青本学期的平时平均成绩;
(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期小青的期末考试成绩x至少为多少分才能保证达到总评成绩90分的最低目标?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元
(1) 求每台甲型手机和乙型手机的利润
(2) 专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机x台,这120台手机全部销售的销售总利润为y元
① 直接写出y关于x的函数关系式_______________,x的取值范围是_______________
② 该商店如何进货才能使销售总利润最大?说明原因
(3) 专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由
-
科目: 来源: 题型:
查看答案和解析>>【题目】点E、F分别是□ABCD的边BC、CD上的点,∠EAF=60°,AF=4
(1) 若AB=2,点E与点B、点F与点D分别重合,求平行四边形ABCD的面积
(2) 若AB=BC,∠B=∠EAF=60°,求证:△AEF为等边三角形
(3) 若BE=CE,CF=2DF,AB=3,直接写出AE的长度(无需解答过程)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP
(1) 如图1,若OP=6,求m的值
(2) 如图2,点C在x轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD
(3) 如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到x轴的距离不大于3,直接写出m的取值范围(无需解答过程)

相关试题