【题目】如图,四边形 ACDE 是证明勾股定理时用到的一个图形,a 、b 、c 是 RtABC和 RtBED 的边长,已知
,这时我们把关于 x 的形如
二次方程称为“勾系一元二次方程”.
![]()
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于 x 的“勾系一元二次方程”
,必有实数根;
(3)若 x 1是“勾系一元二次方程”
的一个根,且四边形 ACDE 的周长是6
,求ABC 的面积.
参考答案:
【答案】(1)
(答案不唯一)(2)见解析(3)1.
【解析】
(1)直接找一组勾股数代入方程即可;
(2)根据根的判别式即可求解;
(3)根据方程的解代入求出a,b,c的关系,再根据完全平方公式的变形进行求解.
(1)当a=3,b=4,c=5时,
勾系一元二次方程为
;
(2)依题意得△=(
)2-4ab=2c2-4ab,
∵a2+b2=c2,∴2c2-4ab=2(a2+b2)-4ab=2(a-b)2≥0,
即△≥0,故方程必有实数根;
(3)把x=-1代入得a+b=
c
∵四边形 ACDE 的周长是6
,
即2(a+b)+
c=6
,故得到c=2,
∴a2+b2=4,a+b=2![]()
∵(a+b)2= a2+b2+2ab
∴ab=2,
故ABC 的面积为
ab=1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得到△AB′C′,即如图,∠BAB′=θ,
=
=
=n,我们将这种变换记为[θ,n].△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ= , n= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2﹣bx+b(a>0,b>0)图象的顶点的纵坐标不大于
,且图象与x轴交于A,B两点,则线段AB长度的最小值是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】计算题:二次根式与分式运算
(1)计算:(
)﹣2+(
﹣
)0+(﹣1)1001+(
﹣3
)×tan30°
(2)先化简,再求值:
﹣
(
﹣a2+b2),其中a=3﹣2
,b=3
﹣3. -
科目: 来源: 题型:
查看答案和解析>>【题目】为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:

(1)求扇形统计图中m的值,并补全条形统计图;
(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?
(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理? -
科目: 来源: 题型:
查看答案和解析>>【题目】我国古代数字的许多创新和发展都位居世界前列,如南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为( )

A.2019B.2018C.191D.190
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P是射线AD上一点,连接PB,沿PB将△APB折叠,得到△A′PB.
(1)如图2所示,当PA′⊥BC时,求线段PA的长度.
(2)当∠DPA′=10°时,求∠APB的度数.

相关试题