【题目】计算题:二次根式与分式运算
(1)计算:(
)﹣2+(
﹣
)0+(﹣1)1001+(
﹣3
)×tan30°
(2)先化简,再求值:
﹣
(
﹣a2+b2),其中a=3﹣2
,b=3
﹣3.
参考答案:
【答案】
(1)解:原式=9+1﹣1+(2
﹣3
)× ![]()
=9﹣
× ![]()
=9﹣3
=6
(2)解:当a=3﹣2
,b=3
﹣3时,
原式=
﹣
[
﹣(a2﹣b2)]
=
﹣
[
﹣(a﹣b)(a+b)]
=
﹣
+a+b
=a+b
=3﹣2
+3
﹣3
= ![]()
【解析】(1)利用负指数幂、0指数幂公式、同类二次根式合并法则可解决;(2)分式化简的基本方法有通分、约分,分子分母出现多项式时看能否分解因式,便于约分.
【考点精析】本题主要考查了零指数幂法则和整数指数幂的运算性质的相关知识点,需要掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数)才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .
(1)求证: △ABE≌△CDF ;
(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得到△AB′C′,即如图,∠BAB′=θ,
=
=
=n,我们将这种变换记为[θ,n].△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ= , n= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2﹣bx+b(a>0,b>0)图象的顶点的纵坐标不大于
,且图象与x轴交于A,B两点,则线段AB长度的最小值是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形 ACDE 是证明勾股定理时用到的一个图形,a 、b 、c 是 RtABC和 RtBED 的边长,已知
,这时我们把关于 x 的形如
二次方程称为“勾系一元二次方程”.
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于 x 的“勾系一元二次方程”
,必有实数根;(3)若 x 1是“勾系一元二次方程”
的一个根,且四边形 ACDE 的周长是6
,求ABC 的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:

(1)求扇形统计图中m的值,并补全条形统计图;
(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?
(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理? -
科目: 来源: 题型:
查看答案和解析>>【题目】我国古代数字的许多创新和发展都位居世界前列,如南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为( )

A.2019B.2018C.191D.190
相关试题