【题目】有一系列等式:
1×2×3×4+1=52=(12+3×1+1)2,
2×3×4×5+1=112=(22+3×2+1)2,
3×4×5×6+1=192=(32+3×3+1)2,
4×5×6×7+1=292=(42+3×4+1)2,
……
(1)根据你的观察,归纳发现规律,写出9×10×11×12+1的结果是________ ;
(2)式子(n-1) n (n+1) (n+2)+1=___________ .
参考答案:
【答案】11881
【解析】
(1)观察下列各式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,
3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,得出规律:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2(n≥1),即可得出9×10×11×12+1的值.
(2)根据(1)得出的规律可得出结论.
(1)观察下列各式:
1×2×3×4+1=52=(12+3×1+1)2,
2×3×4×5+1=112=(22+3×2+1)2,
3×4×5×6+1=192=(32+3×3+1)2,
4×5×6×7+1=292=(42+3×4+1)2,
得出规律:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2(n≥1)
所以9×10×11×12+1=(92+3×9+1)2=1092=11881
故答案为:11881
(2)根据(1)的结论得:
(n-1) n (n+1) (n+2)+1=[(n-1)2+3(n-1)+1]2=[n2-2n+1+3n-3+1]2=(n2+n-1)2
故答案为:(n2+n-1)2
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ABC=45
,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:①∠FCD=45
②AE=EC
③S△ABF:S△AFC=AD:FD
④若BF=2EC,则△FDC周长等于AB的长.
正确结论的序号是___________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=4,点M、N分别为OA、OB边上动点,则△MNP周长的最小值为( )

A. 2 B. 4 C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC和△A1B1C1关于x轴成轴对称,画出△A1B1C1
(2)点C1的坐标为_________,△ABC的面积为__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列推理过程,在括号中填写理由. 已知:如图,点D,E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE
证明:∵AE平分∠BAC(已知)
∴∠1=∠2(________)
∵AC∥DE(已知)
∴∠1=∠3(________)
故∠2=∠3(________)
∵DF∥AE(已知)
∴∠2=∠5(________)
∴∠3=∠4(________)
∴DE平分∠BDE(________)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况.
(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?
(2)他到达离家最远的地方是什么时间?离家多远?
(3)10时到12时他行驶了多少千米?
(4)他可能在哪段时间内休息,并吃午餐?
(5)他由离家最远的地方返回时的平均速度是多少?

相关试题