1.已知向量,是不平行于轴的单位向量,且,则   ( B )

A.()    B.()    C.()    D.()

试题详情>>

2.若互不相等的实数成等差数列,成等比数列,且,则 ( D )

A.4    B.2    C.-2    D.-4

试题详情>>

3.若的内角满足,则                ( A )

A.    B.    C.    D.

试题详情>>

4.设,则的定义域为                      ( B )

A.    B.     

C.     D.

试题详情>>

5.在的展开式中,的幂的指数是整数的项共有             ( C )

A.3项    B.4项    C.5项    D.6项

试题详情>>

6.关于直线与平面,有以下四个命题:      

①若且,则;

②若且,则;

③若且,则;

④若且,则;

其中真命题的序号是                                 ( D )

A.①②    B.③④    C.①④    D.②③

试题详情>>

7.设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若且,则点的轨迹方程是  ( D )

A.    B.

C.    D.

试题详情>>

8.有限集合中元素的个数记做,设都为有限集合,给出下列命题:

①的充要条件是;

②的充要条件是;

③的充要条件是;

④的充要条件是;

其中真命题的序号是                                            ( B )

A.③④    B.①②    C.①④    D.②③

试题详情>>

9.已知平面区域D由以为顶点的三角形内部&边界组成。若在区域D上有无穷多个点可使目标函数取得最小值,则 (C )

A.-2    B.-1    C.1    D.4

试题详情>>

10.关于的方程,给出下列四个命题:    ( A )

①存在实数,使得方程恰有2个不同的实根;

②存在实数,使得方程恰有4个不同的实根;

③存在实数,使得方程恰有5个不同的实根;

④存在实数,使得方程恰有8个不同的实根;

其中命题的个数是

A.0    B.1    C.2    D.3

 

第Ⅱ卷(非选择题   共100分)

注意事项:

试题详情>>

第Ⅱ卷用0.5毫米黑色的签字笔或黑色墨水钢笔直接答在答题卡上。答在试题卷上无效。

试题详情>>

11.设为实数,且,则  4        

试题详情>>

12.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为  0.94    。(精确到0.01)

试题详情>>

13.已知直线与圆相切,则的值为 188

试题详情>>

14.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 20   。(用数字作答)

试题详情>>

15.将杨辉三角中的每一个数都换成,就得到一个如右图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中   r1  。令,则       

试题详情>>

16.(本小题满分12分)

设函数,其中向量,,,。

(Ⅰ)、求函数的最大值和最小正周期;

(Ⅱ)、将函数的图像按向量平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的。

   点评:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力。

   解:(Ⅰ)由题意得,f(x)=a・(b+c)=(sinx,-cosx)・(sinx-cosx,sinx-3cosx)

               =sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x=2+sin(2x+).

所以,f(x)的最大值为2+,最小正周期是=.

(Ⅱ)由sin(2x+)=0得2x+=k.,即x=,k∈Z,

于是d=(,-2),k∈Z.

因为k为整数,要使最小,则只有k=1,此时d=(?,?2)即为所求.

试题详情>>

17.(本小题满分13分)

已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。

(Ⅰ)、求数列的通项公式;

(Ⅱ)、设,是数列的前n项和,求使得对所有都成立的最小正整数m;

点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。

解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得

a=3 ,  b=-2, 所以  f(x)=3x2-2x.

又因为点均在函数的图像上,所以=3n2-2n.

试题详情>>

当n≥2时,an=Sn-Sn-1=(3n2-2n)-=6n-5.

当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()

(Ⅱ)由(Ⅰ)得知==,

故Tn===(1-).

试题详情>>

因此,要使(1-)<()成立的m,必须且仅须满足≤,即m≥10,所以满足要求的最小正整数m为10.

 

如图,在棱长为1的正方体中,是侧棱上的一点,。

(Ⅰ)、试确定,使直线与平面所成角的正切值为;

(Ⅱ)、在线段上是否存在一个定点Q,使得对任意的,D1Q在平面上的射影垂直于,并证明你的结论。

点评:本小题主要考查线面关系、直线于平面所成的角的有关知识及空间想象能力和推理运算能力,考查运用向量知识解决数学问题的能力。

解法1:(Ⅰ)连AC,设AC与BD相交于点O,AP与平面相交于点,,连结OG,因为

PC∥平面,平面∩平面APC=OG,

故OG∥PC,所以,OG=PC=.

又AO⊥BD,AO⊥BB1,所以AO⊥平面,

故∠AGO是AP与平面所成的角.

在Rt△AOG中,tanAGO=,即m=.

所以,当m=时,直线AP与平面所成的角的正切值为.

(Ⅱ)可以推测,点Q应当是AICI的中点O1,因为

D1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1

又AP平面ACC1A1,故 D1O1⊥AP.

那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直。

试题详情>>

19.(本小题满分10分)

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)、试问此次参赛学生总数约为多少人?

(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可共查阅的(部分)标准正态分布表

0

1

2

3

4

5

6

7

8

9

试题详情>>

0.9857

点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。

解:(Ⅰ)设参赛学生的分数为,因为~N(70,100),由条件知,

试题详情>>

P(≥90)=1-P(<90)=1-F(90)=1-=1-(2)=1-0.9772=0.228.

试题详情>>

这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此,

参赛总人数约为≈526(人)。

(Ⅱ)假定设奖的分数线为x分,则

试题详情>>

P(≥x)=1-P(<x)=1-F(90)=1-==0.0951,

试题详情>>

即=0.9049,查表得≈1.31,解得x=83.1.

试题详情>>

故设奖得分数线约为83.1分。

 

试题详情>>

20.(本小题满分14分)

设分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且为它的右准线。

(Ⅰ)、求椭圆的方程;

(Ⅱ)、设为右准线上不同于点(4,0)的任意一点,若直线分别与椭圆相交于异于的点,证明点在以为直径的圆内。

(此题不要求在答题卡上画图)

点评:本小题主要考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力。

解:(Ⅰ)依题意得 a=2c,=4,解得a=2,c=1,从而b=.

故椭圆的方程为 .

(Ⅱ)解法1:由(Ⅰ)得A(-2,0),B(2,0).设M(x0,y0).

∵M点在椭圆上,∴y0=(4-x02).                       1

又点M异于顶点A、B,∴-2<x0<2,由P、A、M三点共线可以得

P(4,).

从而=(x0-2,y0),

=(2,).

∴・=2x0-4+=(x02-4+3y02).      2

将1代入2,化简得・=(2-x0).

∵2-x0>0,∴・>0,则∠MBP为锐角,从而∠MBN为钝角,

故点B在以MN为直径的圆内。

解法2:由(Ⅰ)得A(-2,0),B(2,0).设M(x1,y1),N(x2,y2),

则-2<x1<2,-2<x2<2,又MN的中点Q的坐标为(,),

依题意,计算点B到圆心Q的距离与半径的差

-=(-2)2+()2-[(x1-x2)2+(y1-y2)2]

                 =(x1-2) (x2-2)+y1y1                     3

又直线AP的方程为y=,直线BP的方程为y=,

而点两直线AP与BP的交点P在准线x=4上,

∴,即y2=                       4

又点M在椭圆上,则,即        5

试题详情>>

于是将4、5代入3,化简后可得-=.

从而,点B在以MN为直径的圆内。

 

试题详情>>

21.(本小题满分14分)

设是函数的一个极值点。

(Ⅰ)、求与的关系式(用表示),并求的单调区间;

(Ⅱ)、设,。若存在使得成立,求的取值范围。

 点评:本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力。

解:(Ⅰ)f `(x)=-[x2+(a-2)x+b-a ]e3-x,

由f `(3)=0,得 -[32+(a-2)3+b-a ]e3-3=0,即得b=-3-2a,

则 f `(x)=[x2+(a-2)x-3-2a-a ]e3-x

=-[x2+(a-2)x-3-3a ]e3-x=-(x-3)(x+a+1)e3-x.

令f `(x)=0,得x1=3或x2=-a-1,由于x=3是极值点,

试题详情>>

所以x+a+1≠0,那么a≠-4.

当a<-4时,x2>3=x1,则

在区间(-∞,3)上,f `(x)<0, f (x)为减函数;

在区间(3,?a?1)上,f `(x)>0,f (x)为增函数;

在区间(?a?1,+∞)上,f `(x)<0,f (x)为减函数。

当a>-4时,x2<3=x1,则

在区间(-∞,?a?1)上,f `(x)<0, f (x)为减函数;

在区间(?a?1,3)上,f `(x)>0,f (x)为增函数;

在区间(3,+∞)上,f `(x)<0,f (x)为减函数。

(Ⅱ)由(Ⅰ)知,当a>0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)],

而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f (3)=a+6,

那么f (x)在区间[0,4]上的值域是[-(2a+3)e3,a+6].

又在区间[0,4]上是增函数,

且它在区间[0,4]上的值域是[a2+,(a2+)e4],

由于(a2+)-(a+6)=a2-a+=()2≥0,所以只须仅须

(a2+)-(a+6)<1且a>0,解得0<a<.

故a的取值范围是(0,)。

 

2006年普通高等学校招生全国统一考试(湖北卷)

数学(理工农医类)(编辑:宁冈中学张建华)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。全卷共150分。考试用时120分钟。

第Ⅰ卷(选择题  共50分)

注意事项:

试题详情>>

4.     答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题纸上,并将准考证号条形码粘贴在答题卡上的指定位置。

试题详情>>

5.     每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。

试题详情>>

6.     考试结束后,监考人员将本试题卷和答题卡一并收回。

试题详情>>

1.已知向量,是不平行于轴的单位向量,且,则   ( B )

A.()    B.()    C.()    D.()

解:设=(x,y),则有解得x=,y=,选B

试题详情>>

2.若互不相等的实数成等差数列,成等比数列,且,则 ( D )

A.4    B.2    C.-2    D.-4

解:由互不相等的实数成等差数列可设a=b-d,c=b+d,由可得b=2,所以a=2-d,c=2+d,又成等比数列可得d=6,所以a=-4,选D

试题详情>>

3.若的内角满足,则                ( A )

A.    B.    C.    D.

解:由sin2A=2sinAcosA>0,可知A这锐角,所以sinA+cosA>0,又,故选A

试题详情>>

4.设,则的定义域为                      ( B )

A.    B.     

C.     D.

解:f(x)的定义域是(-2,2),故应有-2<<2且-2<<2解得-4<x<-1或1<x<4

故选B

试题详情>>

5.在的展开式中,的幂的指数是整数的项共有             ( C )

A.3项    B.4项    C.5项    D.6项

解:,当r=0,3,6,9,12,15,18,21,24时,x的指数分别是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均为2的整数次幂,故选C

试题详情>>

6.关于直线与平面,有以下四个命题:      

①若且,则;

②若且,则;

③若且,则;

④若且,则;

其中真命题的序号是                                 ( D )

A.①②    B.③④    C.①④    D.②③

解:用排除法可得选D

试题详情>>

7.设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若且,则点的轨迹方程是  ( D )

A.    B.

C.    D.

解:设P(x,y),则Q(-x,y),又设A(a,0),B(0,b),则a>0,b>0,于是,由可得a=x,b=3y,所以x>0,y>0又=(-a,b)=(-x,3y),由=1可得

故选D

试题详情>>

8.有限集合中元素的个数记做,设都为有限集合,给出下列命题:

①的充要条件是;

②的充要条件是;

③的充要条件是;

④的充要条件是;

其中真命题的序号是                                            ( B )

A.③④    B.①②    C.①④    D.②③

解:①Û集合A与集合B没有公共元素,正确

②Û集合A中的元素都是集合B中的元素,正确

③Û集合A中至少有一个元素不是集合B中的元素,因此A中元素的个数有可能多于B中元素的个数,错误

④Û集合A中的元素与集合B中的元素完全相同,两个集合的元素个数相同,并不意味着它们的元素相同,错误

选B

试题详情>>

9.已知平面区域D由以为顶点的三角形内部以及边界组成。若在区域D上有无穷多个点可使目标函数z=x+my取得最小值,则 (C )

A.-2    B.-1    C.1    D.4

解:依题意,令z=0,可得直线x+my=0的斜率为-,结合可行域可知当直线x+my=0与直线AC平行时,线段AC上的任意一点都可使目标函数z=x+my取得最小值,而直线AC的斜率为-1,所以m=1,选C

试题详情>>

10.关于的方程,给出下列四个命题:    ( A )

①存在实数,使得方程恰有2个不同的实根;

②存在实数,使得方程恰有4个不同的实根;

③存在实数,使得方程恰有5个不同的实根;

④存在实数,使得方程恰有8个不同的实根;

其中命题的个数是

A.0    B.1    C.2    D.3

解:关于x的方程可化为…………(1)

或(-1<x<1)…………(2)

①     当k=-2时,方程(1)的解为±,方程(2)无解,原方程恰有2个不同的实根

②     当k=时,方程(1)有两个不同的实根±,方程(2)有两个不同的实根±,即原方程恰有4个不同的实根

③     当k=0时,方程(1)的解为-1,+1,±,方程(2)的解为x=0,原方程恰有5个不同的实根

④     当k=时,方程(1)的解为±,±,方程(2)的解为±,±,即原方程恰有8个不同的实根

选A

第Ⅱ卷(非选择题   共100分)

注意事项:

试题详情>>

第Ⅱ卷用0.5毫米黑色的签字笔或黑色墨水钢笔直接答在答题卡上。答在试题卷上无效。

试题详情>>

11.设为实数,且,则  4        

解:,

而 所以,解得x=-1,y=5,

所以x+y=4。

试题详情>>

12.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为  0.94    。(精确到0.01)

试题详情>>

解:P==0.94

试题详情>>

13.已知直线与圆相切,则的值为 188

解:圆的方程可化为,所以圆心坐标为(1,0),半径为1,由已知可得

,所以的值为-18或8。

试题详情>>

14.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 20   。(用数字作答)

解:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有=20种不同排法。

试题详情>>

15.将杨辉三角中的每一个数都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中   r1  。令,则

    

解:第一个空通过观察可得。

=(1+-1)+()+(+-)+(+-)+…+(+-)+(+-)

=(1+++…+)+(++++…+)-2(++…+)

=〔(1+++…+)-(++…+)〕+〔(++++…+)

-(++…+)〕=1-+-=+-

所以

试题详情>>

16.(本小题满分12分)

设函数,其中向量,,,。

(Ⅰ)、求函数的最大值和最小正周期;

(Ⅱ)、将函数的图像按向量平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的。

   点评:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力。

   解:(Ⅰ)由题意得,f(x)=a・(b+c)=(sinx,-cosx)・(sinx-cosx,sinx-3cosx)

               =sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x=2+sin(2x+).

所以,f(x)的最大值为2+,最小正周期是=.

(Ⅱ)由sin(2x+)=0得2x+=k.,即x=,k∈Z,

于是d=(,-2),k∈Z.

因为k为整数,要使最小,则只有k=1,此时d=(?,?2)即为所求.

试题详情>>

17.(本小题满分13分)

已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。

(Ⅰ)、求数列的通项公式;

(Ⅱ)、设,是数列的前n项和,求使得对所有都成立的最小正整数m;

点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。

解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得

a=3 ,  b=-2, 所以  f(x)=3x2-2x.

又因为点均在函数的图像上,所以=3n2-2n.

试题详情>>

当n≥2时,an=Sn-Sn-1=(3n2-2n)-=6n-5.

当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()

(Ⅱ)由(Ⅰ)得知==,

故Tn===(1-).

试题详情>>

因此,要使(1-)<()成立的m,必须且仅须满足≤,即m≥10,所以满足要求的最小正整数m为10.

 

如图,在棱长为1的正方体中,是侧棱上的一点,。

(Ⅰ)、试确定,使直线与平面所成角的正切值为;

(Ⅱ)、在线段上是否存在一个定点Q,使得对任意的,D1Q在平面上的射影垂直于,并证明你的结论。

点评:本小题主要考查线面关系、直线于平面所成的角的有关知识及空间想象能力和推理运算能力,考查运用向量知识解决数学问题的能力。

解法1:(Ⅰ)连AC,设AC与BD相交于点O,AP与平面相交于点,,连结OG,因为

PC∥平面,平面∩平面APC=OG,

故OG∥PC,所以,OG=PC=.

又AO⊥BD,AO⊥BB1,所以AO⊥平面,

故∠AGO是AP与平面所成的角.

在Rt△AOG中,tanAGO=,即m=.

所以,当m=时,直线AP与平面所成的角的正切值为.

(Ⅱ)可以推测,点Q应当是AICI的中点O1,因为

D1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1

又AP平面ACC1A1,故 D1O1⊥AP.

那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直。

试题详情>>

19.(本小题满分10分)

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)、试问此次参赛学生总数约为多少人?

(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可共查阅的(部分)标准正态分布表

0

1

2

3

4

5

6

7

8

9

试题详情>>

0.9857

点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。

解:(Ⅰ)设参赛学生的分数为,因为~N(70,100),由条件知,

试题详情>>

P(≥90)=1-P(<90)=1-F(90)=1-=1-(2)=1-0.9772=0.228.

试题详情>>

这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此,

参赛总人数约为≈526(人)。

(Ⅱ)假定设奖的分数线为x分,则

试题详情>>

P(≥x)=1-P(<x)=1-F(90)=1-==0.0951,

试题详情>>

即=0.9049,查表得≈1.31,解得x=83.1.

试题详情>>

故设奖得分数线约为83.1分。

 

试题详情>>

20.(本小题满分14分)

设分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且为它的右准线。

(Ⅰ)、求椭圆的方程;

(Ⅱ)、设为右准线上不同于点(4,0)的任意一点,若直线分别与椭圆相交于异于的点,证明点在以为直径的圆内。

(此题不要求在答题卡上画图)

点评:本小题主要考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力。

解:(Ⅰ)依题意得 a=2c,=4,解得a=2,c=1,从而b=.

故椭圆的方程为 .

(Ⅱ)解法1:由(Ⅰ)得A(-2,0),B(2,0).设M(x0,y0).

∵M点在椭圆上,∴y0=(4-x02).               1

又点M异于顶点A、B,∴-2<x0<2,由P、A、M三点共线可以得

P(4,).

从而=(x0-2,y0),

=(2,).

∴・=2x0-4+=(x02-4+3y02).      2

将1代入2,化简得・=(2-x0).

∵2-x0>0,∴・>0,则∠MBP为锐角,从而∠MBN为钝角,

故点B在以MN为直径的圆内。

解法2:由(Ⅰ)得A(-2,0),B(2,0).设M(x1,y1),N(x2,y2),

则-2<x1<2,-2<x2<2,又MN的中点Q的坐标为(,),

依题意,计算点B到圆心Q的距离与半径的差

-=(-2)2+()2-[(x1-x2)2+(y1-y2)2]

                 =(x1-2) (x2-2)+y1y1                     3

又直线AP的方程为y=,直线BP的方程为y=,

而点两直线AP与BP的交点P在准线x=4上,

∴,即y2=                       4

又点M在椭圆上,则,即        5

试题详情>>

于是将4、5代入3,化简后可得-=.

从而,点B在以MN为直径的圆内。

 

试题详情>>

21.(本小题满分14分)

设是函数的一个极值点。

(Ⅰ)、求与的关系式(用表示),并求的单调区间;

(Ⅱ)、设,。若存在使得成立,求的取值范围。

 点评:本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力。

解:(Ⅰ)f `(x)=-[x2+(a-2)x+b-a ]e3-x,

由f `(3)=0,得 -[32+(a-2)3+b-a ]e3-3=0,即得b=-3-2a,

则 f `(x)=[x2+(a-2)x-3-2a-a ]e3-x

=-[x2+(a-2)x-3-3a ]e3-x=-(x-3)(x+a+1)e3-x.

令f `(x)=0,得x1=3或x2=-a-1,由于x=3是极值点,

试题详情>>

所以x+a+1≠0,那么a≠-4.

当a<-4时,x2>3=x1,则

在区间(-∞,3)上,f `(x)<0, f (x)为减函数;

在区间(3,?a?1)上,f `(x)>0,f (x)为增函数;

在区间(?a?1,+∞)上,f `(x)<0,f (x)为减函数。

当a>-4时,x2<3=x1,则

在区间(-∞,?a?1)上,f `(x)<0, f (x)为减函数;

在区间(?a?1,3)上,f `(x)>0,f (x)为增函数;

在区间(3,+∞)上,f `(x)<0,f (x)为减函数。

(Ⅱ)由(Ⅰ)知,当a>0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)],

而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f (3)=a+6,

那么f (x)在区间[0,4]上的值域是[-(2a+3)e3,a+6].

又在区间[0,4]上是增函数,

且它在区间[0,4]上的值域是[a2+,(a2+)e4],

由于(a2+)-(a+6)=a2-a+=()2≥0,所以只须仅须

(a2+)-(a+6)<1且a>0,解得0<a<.

故a的取值范围是(0,)。

 

 

试题详情>>
关闭