【题目】如图所示,在正方体
中,
是棱
的中点.
(
)求直线
和平面
所成角的正弦值.
(
)在棱
上是否存在一点
,使
平面
?证明你的结论.
![]()
参考答案:
【答案】(1)
;(2)见解析.
【解析】试题分析:(1)先取AA1的中点M,连接EM,BM,根据中位线定理可知EM∥AD,而AD⊥平面ABB1A1,则EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,则∠EBM直线BE与平面ABB1A1所成的角,设正方体的棱长为2,则EM=AD=2,BE=3,于是在Rt△BEM中,求出此角的正弦值即可.
(2)在棱C1D1上存在点F,使B1F平面A1BE,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,根据中位线定理可知EG∥A1B,从而说明A1,B,G,E共面,则BG面A1BE,根据FG∥C1C∥B1G,且FG=C1C=B1B,从而得到四边形B1BGF为平行四边形,则B1F∥BG,而B1F平面A1BE,BG平面A1BE,根据线面平行的判定定理可知B1F∥平面A1BE.
试题解析:
(
)如图(a),取
的中点
,连接
,
,因为
是
的中点,四边形
为正方形,所以
,
又在正方体
中,
平面
,所以
面
,从而
为直线
在平面
上的射影,
直线
与平面
所成的角.设正方体的棱长为
,则
,
,
于是在
中,
,
即:直线
与平面
所成的角的正弦值为
.
(
)在棱
上存在点
,使
平面
,
事实上,如图(b)所示,分别取
和
的中点
、
,连接
、
、
、
,
因
,且
,所以四边形
为平行四边形,
因此
,又
,
分别为
,
的中点,所以
,从而
,这说明
,
,
,
共面,
所以
平面
,
因四边形
与
,皆为正方形
,
分别为
和
的中点,
所以
,且
,
因此四边形
为平行四边形,所以
,而
平面
,
平面
,
故
平面
.
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________________元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:

(1)求参加数学抽测的人数n、抽测成绩的中位数及分数分别在[80,90),[90,100]内的人数;
(2)若从分数在[80,100]内的学生中任选两人进行调研谈话,求恰好有一人分数在[90,100]内的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
,且椭圆上任意一点到左焦点的最大距离为
,最小距离为
.(1)求椭圆的方程;
(2)过点
的动直线
交椭圆
于
两点,试问:在坐标平面上是否存在一个定点
,使得以线段
为直径的圆恒过点
?若存在,求出点
的坐标:若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了检验训练情况,武警某支队于近期举办了一场展示活动,其中男队员12人,女队员18人,测试结果如茎叶图所示(单位:分).若成绩不低于175分者授予“优秀警员”称号,其他队员则给予“优秀陪练员”称号.
(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?
(2)若所有“优秀警员”中选3名代表,用
表示所选女“优秀警员”的人数,试求
的分布列和数学期望.
-
科目: 来源: 题型:
查看答案和解析>>【题目】假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5组数据如下:
x
15.0
25.58
30.0
36.6
44.4
y
39.4
42.9
42.9
43.1
49.2
(1)以x为解释变量,y为预报变量,作出散点图;
(2)求y与x之间的线性回归方程,对于基本苗数56.7预报其有效穗;
(3)计算各组残差,并计算残差平方和;
(4)求R2,并说明残差变量对有效穗的影响占百分之几.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示.


P(K2≥k0)
0.10
0.05
0.01
k0
2.706
3.841
6.635
附:
(1)根据上述数据完成下列2×2列联表,根据此数据,你认为选择不同的工艺与生产出一等品是否有关?
甲工艺
乙工艺
总计
一等品
非一等品
总计
(2)以上述各种产品的频率作为各种产品发生的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.
相关试题