【题目】为了检验训练情况,武警某支队于近期举办了一场展示活动,其中男队员12人,女队员18人,测试结果如茎叶图所示(单位:分).若成绩不低于175分者授予“优秀警员”称号,其他队员则给予“优秀陪练员”称号.
(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?
(2)若所有“优秀警员”中选3名代表,用
表示所选女“优秀警员”的人数,试求
的分布列和数学期望.
![]()
参考答案:
【答案】(1)
(2)见解析
【解析】试题分析:
(1)利用题意和对立事件公式可求得至少有1人是“优秀警员”的概率是
;
(2)题中的分布列属于超几何分布,据此求得分布列和数学期望
即可.
试题解析:
解:(1)根据茎叶图,有“优秀警员”12人,“优秀陪练员”18人
用分层抽样的方法,每个人被抽中的概率是![]()
所以选中的“优秀警员”有4人,“优秀陪练员”有6人.
用事件
表示“至少有1名“优秀警员”被选中”,
则
.
因此,至少有1人是“优秀警员”的概率是![]()
(2)依题意,
的取值为
,
,
,
.
,
,
,
,
因此,
的分布列如下:
| 0 | 1 | 2 | 3 |
|
|
|
|
|
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:

(1)求参加数学抽测的人数n、抽测成绩的中位数及分数分别在[80,90),[90,100]内的人数;
(2)若从分数在[80,100]内的学生中任选两人进行调研谈话,求恰好有一人分数在[90,100]内的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
,且椭圆上任意一点到左焦点的最大距离为
,最小距离为
.(1)求椭圆的方程;
(2)过点
的动直线
交椭圆
于
两点,试问:在坐标平面上是否存在一个定点
,使得以线段
为直径的圆恒过点
?若存在,求出点
的坐标:若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在正方体
中,
是棱
的中点.(
)求直线
和平面
所成角的正弦值.(
)在棱
上是否存在一点
,使
平面
?证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5组数据如下:
x
15.0
25.58
30.0
36.6
44.4
y
39.4
42.9
42.9
43.1
49.2
(1)以x为解释变量,y为预报变量,作出散点图;
(2)求y与x之间的线性回归方程,对于基本苗数56.7预报其有效穗;
(3)计算各组残差,并计算残差平方和;
(4)求R2,并说明残差变量对有效穗的影响占百分之几.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示.


P(K2≥k0)
0.10
0.05
0.01
k0
2.706
3.841
6.635
附:
(1)根据上述数据完成下列2×2列联表,根据此数据,你认为选择不同的工艺与生产出一等品是否有关?
甲工艺
乙工艺
总计
一等品
非一等品
总计
(2)以上述各种产品的频率作为各种产品发生的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个月)和市场占有率(y%)的几组相关对应数据:
x
1
2
3
4
5
y
0.02
0.05
0.1
0.15
0.18
(1)根据上表中的数据,用最小二乘法求出y关于x的线性回归方程;
(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精确到月).
附:
,
.
相关试题