【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________________元.
参考答案:
【答案】216 000
【解析】设生产产品A、产品B分别为x,y件,利润之和为z元,
则
,即
,目标函数为z=2 100x+900y.
作出二元一次不等式组表示的平面区域,如下图中阴影部分所示,
![]()
将z=2 100x+900y变形得
,当直线
经过点
时,z取得最大值,解方程组
,得点
的坐标为(60,100).所以当x=60,y=100时,
2100×60+900×100=216 000.
故生产产品A、产品B的利润之和的最大值为216 000元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列{an}是首项为a1=
,公比q=
的等比数列,设bn+2=3
an(n∈N*),数列{cn}满足cn=anbn .
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn;
(3)若cn≤
+m﹣1对一切正整数n恒成立,求实数m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知两个无穷数列
和
的前
项和分别为
,
,
,
,对任意的
,都有
.(1)求数列
的通项公式;(2)若
为等差数列,对任意的
,都有
.证明:
;(3)若
为等比数列,
,
,求满足
的
值. -
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-5:不等式选讲
已知集合

,对于集合
的两个非空子集
,
,若
,则称
为集合
的一组“互斥子集”.记集合
的所有“互斥子集”的组数为
(视
与
为同一组“互斥子集”).(1)写出
,
,
的值;(2)求
. -
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分10分)
(2017天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟)
广告播放时长(分钟)
收视人次(万)
甲
70
5
60
乙
60
5
25
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用
,
表示每周计划播出的甲、乙两套连续剧的次数.(1)用
,
列出满足题目条件的数学关系式,并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆C经过点A(﹣2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)若
=﹣2,求实数k的值;
(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知
为等差数列,前n项和为
,
是首项为2的等比数列,且公比大于0,
,
,
.(1)求
和
的通项公式;(2)求数列
的前n项和
.
相关试题